Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 14EAP
FIGURE EX30.14 shows a 10-cm-diameter loop in three different magnetic fields. The loops resistance is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 20-cm-long, zero-resistance wire is pulled outward, on zero-resistance rails, at a steady speed of 10 m/s in a 0.10 T magnetic field. (See Figure.) On the opposite side, a 1.0 Ω carbon resistor completes the circuit by connecting the two rails. The mass of the resistor is 50 mg.a. What is the induced current in the circuit?b. How much force is needed to pull the wire at this speed?c. How much does the temperature of the carbon increase if the wire is pulled for 10 s? The specific heat of carbon is 710 J/kg • K. Neglect thermal energy transfer out of the resistor.
A conducting wire shaped in a “U shape” is connected to a 5 ohm light bulb.The 0.8 T external magnetic field is directed into the page as shown.
A conducting bar of length 1.2 m is sliding on the conducting wire at 2 m/s to the right. What is the induced emf?
Hint: the induced emf is the negative of the change in magnetic flux. The magnetic flux changes because the area of the U shaped wire placed in the magnetic field changes when the conducting wire slides to the right.
Induced emf <=> emf = -N ∆Φ/∆t∆Φ =∆(BA)= B ∆A =B ( Af-Ai)
Group of answer choices
A) 1.92 V
B) 0.8 V
C) 2.4 V
D) 6.8 V
Please show how you solved the question and provide explanations. I am struggling in this section of physics, so I greatly appreciate your guidance.
Suppose a magnetic field B(t) oscillates with frequency w. A circular loop of copper lies
perpendicular to the magnetic field. The radius of the circular loop is r.
a.
Write down an expression for the magnetic field as a function of time. Determine the
induced emf & in the loop of wire and use this to calculate the current generated in the loop as a
function of time.
b.
What is the power dissipation in the wire as a function to time? Make a sketch of this
function. What is the average power Pave dissipation in the wire? Hint: what is the average value of
the function you sketched?
C.
Recall that power is a rate of energy transfer, and that power dissipated by a resistor
leads to a change in the thermal energy of the material (in this case the copper wire). We can relate a
change in thermal energy to a change in temperature by AT
where M is the total mass and c
ΔΕth
Mc
is the specific heat capacity of the material (see page 526 for details). Find an expression for a
dT
-
differential…
Chapter 30 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 30 - Prob. 1CQCh. 30 - You want to insert a loop of copper wire between...Ch. 30 - A vertical, rectangular loop of copper wire is...Ch. 30 - Does the loop of wire in FIGURE Q30.4 have a...Ch. 30 - s5. The two loops of wire in FIGURE Q30.5 are...Ch. 30 - FIGURE Q30.6 shows a bar magnet being pushed...Ch. 30 - A bar magnet is pushed toward a loop of wire as...Ch. 30 - FIGURE Q30.8 shows a bar magnet. a coil of wire,...Ch. 30 - Prob. 9CQCh. 30 - An inductor with a 2.0 A current stores energy. At...
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Rank in order, from largest to smallest, the three...Ch. 30 - For the circuit of FIGURE Q30.14: a. What is the...Ch. 30 - The earth’s magnetic field strength is 5.0105T ....Ch. 30 - A potential difference of 0.050 V is developed...Ch. 30 - A 10 -cm-long wire is pulled along a U-shaped...Ch. 30 - What is the magnetic flux through the loop shown...Ch. 30 - FIGURE EX30.5 shows a 10cm10cm square bent at a 90...Ch. 30 - Prob. 6EAPCh. 30 - Prob. 7EAPCh. 30 - FIGURE EX30.8 shows a 2.0 -cm-diameter solenoid...Ch. 30 - Prob. 9EAPCh. 30 - 10. A solenoid is wound as shown in FIGURE...Ch. 30 - 11. The metal equilateral triangle in FIGURE...Ch. 30 - The current in the solenoid of FIGURE EX3O.12 is...Ch. 30 - The loop in FIGURE EX30.13 is being pushed into...Ch. 30 - FIGURE EX30.14 shows a 10-cm-diameter loop in...Ch. 30 - Prob. 15EAPCh. 30 - 16. A -turn coil of wire cm in diameter is in a...Ch. 30 - A 5.0 -cm-diameter coil has 20 turns and a...Ch. 30 - FIGURE EX30.18 shows the current as a function of...Ch. 30 - The magnetic field in FIGURE EX30.19 is decreasing...Ch. 30 - The magnetic field inside a -cm-diameter solenoid...Ch. 30 - Scientists studying an anomalous magnetic field...Ch. 30 - Prob. 22EAPCh. 30 - Prob. 23EAPCh. 30 - Prob. 24EAPCh. 30 - Prob. 25EAPCh. 30 - Prob. 26EAPCh. 30 - How much energy is stored in a -cm-diameter,...Ch. 30 - MRI (magnetic resonance imaging) is a medical...Ch. 30 - Prob. 29EAPCh. 30 - Prob. 30EAPCh. 30 - Prob. 31EAPCh. 30 - Prob. 32EAPCh. 30 - Prob. 33EAPCh. 30 - Prob. 34EAPCh. 30 - At t=0 s, the current in the circuit in FIGURE...Ch. 30 - The switch in FIGURE EX3O.36 has been open for a...Ch. 30 - Prob. 37EAPCh. 30 - Prob. 38EAPCh. 30 - Prob. 39EAPCh. 30 - Prob. 40EAPCh. 30 - A 10cm10cm square loop lies in the xy-plane. The...Ch. 30 - A spherical balloon with a volume of L is in a mT...Ch. 30 - Prob. 43EAPCh. 30 - Prob. 44EAPCh. 30 - Prob. 45EAPCh. 30 - FIGURE P30.46 shows a 4.0-cm-diameter loop with...Ch. 30 - Prob. 47EAPCh. 30 - Prob. 48EAPCh. 30 - Prob. 49EAPCh. 30 - Prob. 50EAPCh. 30 - Prob. 51EAPCh. 30 - Prob. 52EAPCh. 30 - Prob. 53EAPCh. 30 - Prob. 54EAPCh. 30 - Prob. 55EAPCh. 30 - Your camping buddy has an idea for a light to go...Ch. 30 - 57. The -wide, zero-resistance slide wire shown...Ch. 30 - ]58. You’ve decided to make the magnetic...Ch. 30 - FIGURE P30.59 shows a U-shaped conducting rail...Ch. 30 - Prob. 60EAPCh. 30 - Prob. 61EAPCh. 30 - Prob. 62EAPCh. 30 - Equation 30.26 is an expression for the induced...Ch. 30 - Prob. 64EAPCh. 30 - One possible concern with MRI (see Exercise 28) is...Ch. 30 - FIGURE P30.66 shows the current through a 10mH...Ch. 30 - Prob. 67EAPCh. 30 - Prob. 68EAPCh. 30 - Prob. 69EAPCh. 30 - Prob. 70EAPCh. 30 - An LC circuit is built with a inductor and an...Ch. 30 - Prob. 72EAPCh. 30 - For your final exam in electronics, you’re asked...Ch. 30 - The inductor in FIGURE P30.74 is a -cm-long, -cm-...Ch. 30 - The capacitor in FIGURE P30.75 is initially...Ch. 30 - The switch in FIGURE P30.76 has been open for a...Ch. 30 - 77. The switch in FIGURE P30.77 has been open for...Ch. 30 - Prob. 78EAPCh. 30 - Prob. 79EAPCh. 30 - Prob. 80EAPCh. 30 - In recent years it has been possible to buy a 1.0F...Ch. 30 - Prob. 82EAPCh. 30 - Prob. 83EAPCh. 30 - Prob. 84EAPCh. 30 - A 2.0 -cm-diameter solenoid is wrapped with 1000...Ch. 30 - High-frequency signals are often transmitted along...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P32.21 shows a circular conducting loop with a 5.00-cm radius and a total resistance of 1.30 placed within a uniform magnetic field pointing into the page. a. What is the rate at which the magnetic field is changing if a counterclockwise current I = 4.60 102 A is induced in the loop? b. Is the induced current caused by an increase or a decrease in the magnetic field with time?arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forwardA constant magnetic field of 0.275 T points through a circular loop of wire with radius 3.50 cm as shown in Figure P32.1. a. What is the magnetic flux through the loop? b. Is a current induced in the loop? Explain. FIGURE P32.1arrow_forward
- The square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forwardA square wire loop with 2m sides is perpendicular to uniform magnetic field, with half the area of the loop in the field as shown in the figure. The loop has resistance 0.5ohm. If the magnitude of the field varies with time according to 0.04-3*t, with B in teslas and t in seconds; what are the net emf in the circuit? the direction of the (net) current around the loop?arrow_forwardA coil with 20 turns of wire is wrapped around a tube with a cross-sectional area of 1.0 m2. A magnetic field is applied at a right angle at 0.50 T. If the coil is pulled out of the magnetic field in 5 seconds, what emf is induced in the coil? The resistance of the wire in the previous question is 0.50 Q. What is the current running through the wire?arrow_forward
- A velocity selector in a mass spectrometer uses a 0.11 T magnetic field. a. What electric field strength is needed to select a speed of 4.24 ✕ 106 m/s? V/m b. What is the voltage between the plates if they are separated by 1.00 cm? kVarrow_forwardA 7.00-cm-long wire is pulled along a U-shaped conducting rail in aperpendicular magnetic field. The total resistance of the wire and rail is 0.350Ω. Pulling the wire at a steady speed of 4.00 m/s causes 4.50 W of power to bedissipated in the circuit.a. Make a sketch of the situationb. Find the strength of the magnetic field in Teslas?arrow_forwardThe answer is negatively charged. Please explain to me why.arrow_forward
- A square loop with sideofa= 10 cm is placed in a perpendicular magnetic field of 1.0 T. Themagnetic field is initially pointing in the +k̂direction and flips (changes sign) in Δt= 0.1 s. You are told thatthe field changes at a constant rate. a.What is the direction of the induced current in the square loop? b.Let the resistance of the loop (measured in ohms) be equal to the total length of the wire that forms theloop (measured in cm). What is the magnitude of the induced current in the loop? c.How will the induced current change if you reduce the length of each side of theloop to 5 cm? Will it increaseordecrease,and by what factor?arrow_forwardA loop of wire sits in an external magnetic field as shown (in other words, the field shown in the picture is NOT a field created by the loop). The loop has a radius of 2.8 m. If the external magnetic field changes from 5.5 T to 11 T in 6.1 s, what is the magnitude of the induced emf in the loop? a. 2.22×101 V b. 2.22×101 V c. 1.59×101 V d. 4.44×101 V e. 7.07 Varrow_forwardA circular wire loop 51 cm in diameter has resistance 120 Ω and lies in a horizontal plane. A uniform magnetic field points vertically downward, and in 25 ms it increases linearly from 5.0 mT to 55 mT A. Find the magnetic flux through the loop at the beginning. B. Find the magnetic flux through the loop at the end of the 25-ms period. C. What's the loop current during this time?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
THE BAR MAGNET; Author: 7activestudio;https://www.youtube.com/watch?v=DWQfL5IJTaQ;License: Standard YouTube License, CC-BY