OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 92QRT

You mix 25.0 mL of 0.234-M FeCl3 solution with 42.5 mL of 0.453-M NaOH.

  1. (a) Calculate the maximum mass, in grams, of Fe(OH)3 that will precipitate.
  2. (b) Determine which reactant is in excess.
  3. (c) Calculate the concentration of the excess reactant remaining in solution after the maximum mass of Fe(OH)3 has precipitated.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The maximum mass in grams of Fe(OH)3 that will precipitate has to be calculated.

Concept introduction:

Limiting reagent:

A limiting reactant is a reactant that is completely converted to products. Once all the limiting reactant is converted to products there is no other reactant to react.

Number of moles can be calculated by using following formula,

  No.of Moles  = MassMolarmass

Explanation of Solution

The reaction is shown below,

  FeCl3(aq) + 3 NaOH(aq) Fe(OH)3(s) + 3 NaCl(aq)

  Mixing of 25.0 mL of 0.234-M FeCl3 solution with 42.5 mL of 0.453-M NaOH.

According to the balanced equation, 1 moles of FeCl3 reaction with 3 moles of NaOH gives one mole of Fe(OH)3 and 3 moles of sodium chloride. Therefore,

Moles of Fe(OH)3 is calculated as follows,

    MolesofFe(OH)3=0.025LofFeCl3×0.234molFeCl31LFeCl3×1molFe(OH)31molFeCl3MolesofFe(OH)3=5.85×103mol

  MolesofFe(OH)3=0.0425LofNaOH×0.453molNaOH1LNaOH×1molFe(OH)33molNaOHMolesofFe(OH)3=6.42×10-3mol

According to the mole calculation, FeCl3 is smaller than the Sodium hydroxide, therefore, FeCl3 is the limiting reagent.

Molar Mass Fe(OH)3=106.867 g/mol

The mass in grams of Fe(OH)3 is calculated as follows,

  Mass  = No.of Moles×MolarmassMass  = 5.85×103mol×106.867 g/mol Mass  = 0.625 gofFe(OH)3

The mass in grams of Fe(OH)3 is 0.625 g.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The excess reactant has to be identified.

Concept introduction:

Refer to part (a)

Explanation of Solution

The reaction is shown below,

  FeCl3(aq) + 3 NaOH(aq) Fe(OH)3(s) + 3 NaCl(aq)

  Mixing of 25.0 mL of 0.234-M FeCl3 solution with 42.5 mL of 0.453-M NaOH.

According to the balanced equation, 1 moles of FeCl3 reaction with 3 moles of NaOH gives one mole of Fe(OH)3 and 3 moles of sodium chloride. Therefore,

Moles of Fe(OH)3 is calculated as follows,

    MolesofFe(OH)3=0.025LofFeCl3×0.234molFeCl31LFeCl3×1molFe(OH)31molFeCl3MolesofFe(OH)3=5.85×103mol

  MolesofFe(OH)3=0.0425LofNaOH×0.453molNaOH1LNaOH×1molFe(OH)33molNaOHMolesofFe(OH)3=6.42×10-3mol

According to the mole calculation, FeCl3 is smaller than the Sodium hydroxide, therefore, FeCl3 is the limiting reagent. Hence, sodium hydroxide is excess reactant.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The concentration of excess reactant remaining in solution after the precipitation of Fe(OH)3 has to be calculated.

Concept introduction:

The Molarity of the solution can be calculated by using following formula

  Molarity of the solution=NumberofmolesofsoluteVolumeofsolutioninlitre

Explanation of Solution

Expected not formed Fe(OH)3 in the reaction = 0.00642 mol Fe(OH)3  expected (from NaOH) - 0.00585 mol Fe(OH)3 formed.

Expected not formed Fe(OH)3 in the reaction = 0.00057 mol Fe(OH)3

Unreacted mole of sodium hydroxide is calculated as follows,

  MolesofunreactedNaOH=0.00057molofFe(OH)3notformed×3molNaOH1molFe(OH)3MolesofunreactedNaOH=1.71×10-3mol

Total volume = 25ml+42.5ml=67.5ml(or) 0.0675L.

Molarity of the sodium hydroxide solution is calculated as follows,

    Molarity ofNaOH=NumberofmolesofsoluteVolumeofsolutioninlitreMolarity ofNaOH=0.0017molNaOH0.0675LMolarity ofNaOH=0.0252M

The concentration of excess reactant is 0.0252M.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Strain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Next
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT

Chapter 3 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 3.4 - Prob. 3.5CECh. 3.4 - Look back through the discussion of electrolytes...Ch. 3.4 - Prob. 3.8PSPCh. 3.4 - Prob. 3.9PSPCh. 3.4 - Write a balanced equation for the reaction of...Ch. 3.4 - Prob. 3.6ECh. 3.4 - Prob. 3.7ECh. 3.4 - Prob. 3.8ECh. 3.4 - Prob. 3.9CECh. 3.4 - Prob. 3.10CECh. 3.5 - Prob. 3.11CECh. 3.5 - Prob. 3.12CECh. 3.5 - Prob. 3.13ECh. 3.5 - Prob. 3.11PSPCh. 3.5 - Prob. 3.12PSPCh. 3.5 - Prob. 3.14CECh. 3.6 - Prob. 3.15CECh. 3.6 - Prob. 3.16ECh. 3.6 - Prob. 3.13PSPCh. 3.6 - Prob. 3.17ECh. 3.6 - Prob. 3.14PSPCh. 3.7 - Prob. 3.15PSPCh. 3.7 - Using the same reaction, calculate the mass of...Ch. 3.7 - At high temperatures, silicon dioxide reacts with...Ch. 3.7 - Urea is used as a fertilizer because it can react...Ch. 3.8 - Assume the methanol synthesis has an 85.0% yield...Ch. 3.8 - Prob. 3.19PSPCh. 3.8 - Prob. 3.19ECh. 3.8 - Prob. 3.20ECh. 3.9 - Phenol is a compound of carbon, hydrogen, and...Ch. 3.9 - Calcium carbonate forms carbon dioxide and calcium...Ch. 3.10 - Prob. 3.20PSPCh. 3.10 - Prob. 3.23ECh. 3.10 - Prob. 3.24ECh. 3.10 - Prob. 3.25CECh. 3.10 - Describe how you would prepare each solution. 1.00...Ch. 3.10 - Prob. 3.26ECh. 3.10 - Prob. 3.22PSPCh. 3.10 - Prob. 3.27CECh. 3.11 - Prob. 3.23PSPCh. 3.11 - Prob. 3.24PSPCh. 3.11 - Sodium chloride is used in intravenous solutions...Ch. 3.12 - Show that the reaction of KMnO4 with H2O2 is a...Ch. 3.12 - Prob. 3.25PSPCh. 3 - Aqueous solutions of ammonium sulfide and...Ch. 3 - In a blast furnace at high temperature, iron(III)...Ch. 3 - What information does a balanced chemical equation...Ch. 3 - Prob. 2QRTCh. 3 - Prob. 3QRTCh. 3 - Prob. 4QRTCh. 3 - Prob. 5QRTCh. 3 - Prob. 6QRTCh. 3 - When asked, “What is the limiting reactant?” you...Ch. 3 - Prob. 8QRTCh. 3 - Prob. 9QRTCh. 3 - For this reaction, fill in the table with the...Ch. 3 - Prob. 11QRTCh. 3 - Prob. 12QRTCh. 3 - This diagram shows A (blue spheres) reacting with...Ch. 3 - Prob. 14QRTCh. 3 - Prob. 15QRTCh. 3 - Prob. 16QRTCh. 3 - Prob. 17QRTCh. 3 - Prob. 18QRTCh. 3 - Prob. 19QRTCh. 3 - Balance these equations. (a) UO2(s) + HF() UF4(s)...Ch. 3 - Prob. 21QRTCh. 3 - Prob. 22QRTCh. 3 - Prob. 23QRTCh. 3 - Balance these combustion reactions. (a) C6H12O6 +...Ch. 3 - Prob. 25QRTCh. 3 - Prob. 26QRTCh. 3 - Prob. 27QRTCh. 3 - Which substance conducts electricity when...Ch. 3 - Prob. 29QRTCh. 3 - Predict whether each compound is soluble in water....Ch. 3 - Prob. 31QRTCh. 3 - Which drawing is the best nanoscale representation...Ch. 3 - If aqueous solutions of potassium carbonate and...Ch. 3 - If aqueous solutions of potassium sulfide and...Ch. 3 - Prob. 35QRTCh. 3 - Prob. 36QRTCh. 3 - Prob. 37QRTCh. 3 - Prob. 38QRTCh. 3 - Prob. 39QRTCh. 3 - Prob. 40QRTCh. 3 - Prob. 41QRTCh. 3 - Prob. 42QRTCh. 3 - Prob. 43QRTCh. 3 - Prob. 44QRTCh. 3 - Prob. 45QRTCh. 3 - Prob. 46QRTCh. 3 - Prob. 47QRTCh. 3 - Prob. 48QRTCh. 3 - Prob. 49QRTCh. 3 - Prob. 50QRTCh. 3 - Prob. 51QRTCh. 3 - Prob. 52QRTCh. 3 - Prob. 53QRTCh. 3 - Prob. 54QRTCh. 3 - Prob. 55QRTCh. 3 - Prob. 56QRTCh. 3 - Prob. 57QRTCh. 3 - Prob. 58QRTCh. 3 - Nitrogen monoxide is oxidized in air to give brown...Ch. 3 - Prob. 60QRTCh. 3 - The final step in the manufacture of platinum...Ch. 3 - Disulfur dichloride, S2Cl2, is used to vulcanize...Ch. 3 - Prob. 63QRTCh. 3 - Prob. 64QRTCh. 3 - Prob. 65QRTCh. 3 - Prob. 66QRTCh. 3 - Prob. 67QRTCh. 3 - Cisplatin, Pt(NH3)2Cl2, a drug used in the...Ch. 3 - Aluminum chloride, Al2Cl6, is an inexpensive...Ch. 3 - Prob. 70QRTCh. 3 - Prob. 71QRTCh. 3 - Prob. 72QRTCh. 3 - Prob. 73QRTCh. 3 - Quicklime, CaO, is formed when calcium hydroxide...Ch. 3 - Prob. 75QRTCh. 3 - Disulfur dichloride, which has a revolting smell,...Ch. 3 - Prob. 77QRTCh. 3 - Prob. 78QRTCh. 3 - Quinone, which is used in the dye industry and in...Ch. 3 - l-Dopa is a drug used for the treatment of...Ch. 3 - Write the balanced chemical equation for the...Ch. 3 - Prob. 82QRTCh. 3 - Prob. 83QRTCh. 3 - Prob. 84QRTCh. 3 - Prob. 85QRTCh. 3 - Prob. 86QRTCh. 3 - You need 300. mL of 0.500-M K2Cr2O7. Which method...Ch. 3 - You need to make a 0.300-M solution of NiSO4(aq)....Ch. 3 - You wish to make a 0.200-M solution of CuSO4(aq)....Ch. 3 - Prob. 90QRTCh. 3 - Prob. 91QRTCh. 3 - You mix 25.0 mL of 0.234-M FeCl3 solution with...Ch. 3 - A soft drink contains an unknown mass of citric...Ch. 3 - Prob. 94QRTCh. 3 - Prob. 95QRTCh. 3 - Potassium hydrogen phthalate, KHC8H4O4, is used to...Ch. 3 - Prob. 97QRTCh. 3 - Prob. 98QRTCh. 3 - Prob. 99QRTCh. 3 - Prob. 100QRTCh. 3 - Boron forms an extensive series of compounds with...Ch. 3 - Prob. 102QRTCh. 3 - Prob. 103QRTCh. 3 - Prob. 104QRTCh. 3 - Prob. 105QRTCh. 3 - Azurite is a copper-containing mineral that often...Ch. 3 - Prob. 107QRTCh. 3 - Prob. 108QRTCh. 3 - Vitamin C is ascorbic acid, HC6H7O6, which can be...Ch. 3 - Prob. 110QRTCh. 3 - Prob. 111QRTCh. 3 - Prob. 112QRTCh. 3 - Prob. 113QRTCh. 3 - Prob. 114QRTCh. 3 - Prob. 115QRTCh. 3 - Prob. 116QRTCh. 3 - Prob. 117QRTCh. 3 - Prob. 118QRTCh. 3 - Prob. 119QRTCh. 3 - Prob. 120QRTCh. 3 - Ammonia can be formed by a direct reaction of...Ch. 3 - Carbon monoxide burns readily in oxygen to form...Ch. 3 - Prob. 123QRTCh. 3 - Write a balanced chemical equation that represents...Ch. 3 - A student set up an experiment for six different...Ch. 3 - A weighed sample of a metal is added to liquid...Ch. 3 - Prob. 127QRTCh. 3 - Prob. 128QRTCh. 3 - Each box represents a tiny volume in an aqueous...Ch. 3 - Consider the chemical reaction 2 S + 3 O2 → 2 SO3....Ch. 3 - Prob. 131QRTCh. 3 - Prob. 132QRTCh. 3 - Prob. 133QRTCh. 3 - Prob. 134QRTCh. 3 - Prob. 135QRTCh. 3 - Prob. 136QRTCh. 3 - Prob. 137QRTCh. 3 - Prob. 138QRTCh. 3 - Prob. 139QRTCh. 3 - Prob. 140QRTCh. 3 - Prob. 141QRTCh. 3 - Prob. 142QRTCh. 3 - In a reaction, 1.2 g element A reacts with exactly...Ch. 3 - Prob. 144QRTCh. 3 - When solutions of silver nitrate and sodium...Ch. 3 - Nickel metal reacts with aqueous silver nitrate in...Ch. 3 - Prob. 147QRTCh. 3 - Prob. 148QRTCh. 3 - Prob. 149QRTCh. 3 - Prob. 150QRTCh. 3 - A mountain lake that is 4.0 km × 6.0 km with an...Ch. 3 - Prob. 152QRTCh. 3 - Prob. 153QRTCh. 3 - Prob. 154QRTCh. 3 - Prob. 155QRTCh. 3 - Ethanol, C2H5OH, is a gasoline additive that can...Ch. 3 - Prob. 157QRTCh. 3 - Prob. 3.ACPCh. 3 - Prob. 3.BCPCh. 3 - Prob. 3.DCPCh. 3 - Prob. 3.ECPCh. 3 - Prob. 3.FCPCh. 3 - Prob. 3.GCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY