OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 141QRT

(a)

Interpretation Introduction

Interpretation:

From the given trials of reactants, a trial that contains Stoichiometric amounts of the reactants has to be determined.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given,

    TrialABCDE
0.10 M Xn+7 mL6 mL5 mL4 mL3 mL
0.20 M Ym-3 mL4 mL5 mL6 mL7 mL
Excess Xn+ presentYesYesYesNoNo
Excess Ym- presentNoNoNoNoYes

By observing the given trails, Trial D has no excess reactants present in stoichiometric amounts of reactants.

Assume the volumes are measured with at least graduated cylinders, giving them one decimal place.

(b)

Interpretation Introduction

Interpretation:

Number of moles of Xn+ reacted in the trials has to be calculated.

Concept introduction:

Number of moles is calculated as follows,

  Numberofmoles=Volumeofsolutioninlitre×Concentration

(b)

Expert Solution
Check Mark

Explanation of Solution

Given,

TrialABCDE
0.10 M Xn+7 mL6 mL5 mL4 mL3 mL
0.20 M Ym-3 mL4 mL5 mL6 mL7 mL
Excess Xn+ presentYesYesYesNoNo
Excess Ym- presentNoNoNoNoYes

Number of moles of Xn+ reacted in the trials is calculated as follows,

  Numberofmoles=Volumeofsolutioninlitre×ConcentrationNumberofmoles=4.0×10-30.10molXn+1LNumberofmoles=4.0×10-4molXn+

Number of moles is calculated.

(c)

Interpretation Introduction

Interpretation:

Number of moles of Ym- reacted in the trials has to be calculated.

Concept introduction:

  Refer to part (b)

(c)

Expert Solution
Check Mark

Explanation of Solution

Given,

TrialABCDE
0.10 M Xn+7 mL6 mL5 mL4 mL3 mL
0.20 M Ym-3 mL4 mL5 mL6 mL7 mL
Excess Xn+ presentYesYesYesNoNo
Excess Ym- presentNoNoNoNoYes

Number of moles of Ym- reacted in the trials is calculated as follows,

  Numberofmoles=Volumeofsolutioninlitre×ConcentrationNumberofmoles=6.0×10-30.20molYm-1LNumberofmoles=1.2×10-3molYm-

Number of moles is calculated.

(d)

Interpretation Introduction

Interpretation:

The whole number ratio of Xn+ to Ym- reacted has to be calculated.

Concept introduction:

  Refer to part (b)

(d)

Expert Solution
Check Mark

Explanation of Solution

Given,

TrialABCDE
0.10 M Xn+7 mL6 mL5 mL4 mL3 mL
0.20 M Ym-3 mL4 mL5 mL6 mL7 mL
Excess Xn+ presentYesYesYesNoNo
Excess Ym- presentNoNoNoNoYes

Number of moles of Xn+ reacted in the trials is calculated as follows,

  Numberofmoles=Volumeofsolutioninlitre×ConcentrationNumberofmoles=4.0×10-30.10molXn+1LNumberofmoles=4.0×10-4molXn+

Number of moles of Ym- reacted in the trials is calculated as follows,

  Numberofmoles=Volumeofsolutioninlitre×ConcentrationNumberofmoles=6.0×10-30.20molYm-1LNumberofmoles=1.2×10-3molYm-

The whole number ratio of Xn+ to Ym- is given below,

  The determination of mole ratio is = 4.0×10-4molXn+:1.2×10-3molYm-

  Dividing by 4,

  The determination of mole ratio is = 1×10-4molXn+:3×10-4molYm-

The whole number ratio of Xn+ to Ym- is 1×10-4molXn+:3×10-4molYm-.

(d)

Interpretation Introduction

Interpretation:

The chemical formula of the product has to be determined.

(d)

Expert Solution
Check Mark

Explanation of Solution

The whole number ratio of Xn+ to Ym- is 1×10-4molXn+:3×10-4molYm-.

According to the ratio calculation, x is 1×10-4molXn+ mole and y is 3×10-4molYm-. Therefore the chemical formula of the product is XY3.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. An unknown element, X, combines with chlorine to give a substance with the formula XC14. A chlorine analysis of the substance indicates that it contains 83.47% chlorine by mass. What element is X and what is the formula of this compound? (Hint: to identify an element or compound, identify its molar mass. Remember that Molar Mass = (grams A)/(moles A). Solve for each individually and then divide them to find molar mass.)
1. When hydrogen sulfide (H2S, MM = 34.08 g/mol) gas is bubbled into a solution of sodium hydroxide (NaOH, 40.00 g/mol), sodium sulfide (Na2S, 78.04 g/mol) and water (18.02 g/mol) are produced according to the balanced chemical equation shown below? H2S 2 NaOH --> Na2S 2 H₂O (a) Assuming the reaction goes to completion, how many grams of sodium sulfide are formed if 2.50g of hydrogen sulfide is bubbled into a solution containing 1.85g of NaOH? (20 pts) (b) Which reactant and how much of it remains after the reaction has been completed? (15 pts) (c) If only 0.400g of sodium sulfide was recovered, what is the percent yield of this reaction (5 pts)
The organic compound MTBE (methyltertiarybutylether) is used as a fuel additive that allows gasoline to burn more cleanly thus leading to a reduction in pollution. Recently, however, MTBE has been found in the drinking water of a number of communities. As a result several states are phasing out the use of MTBE as a fuel additive. A combustion experiment using 10.00 g of MTBE was found to produce 24.97g of CO2 and 12.26 g of H2O. (a) What is the empirical formula of MTBE assuming it contains C, H, and O only? (b) The molar mass of MTBE was experimentally determined to be 88.1 g/mol. Using this information what is the molecular formula of MTBE

Chapter 3 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 3.4 - Prob. 3.5CECh. 3.4 - Look back through the discussion of electrolytes...Ch. 3.4 - Prob. 3.8PSPCh. 3.4 - Prob. 3.9PSPCh. 3.4 - Write a balanced equation for the reaction of...Ch. 3.4 - Prob. 3.6ECh. 3.4 - Prob. 3.7ECh. 3.4 - Prob. 3.8ECh. 3.4 - Prob. 3.9CECh. 3.4 - Prob. 3.10CECh. 3.5 - Prob. 3.11CECh. 3.5 - Prob. 3.12CECh. 3.5 - Prob. 3.13ECh. 3.5 - Prob. 3.11PSPCh. 3.5 - Prob. 3.12PSPCh. 3.5 - Prob. 3.14CECh. 3.6 - Prob. 3.15CECh. 3.6 - Prob. 3.16ECh. 3.6 - Prob. 3.13PSPCh. 3.6 - Prob. 3.17ECh. 3.6 - Prob. 3.14PSPCh. 3.7 - Prob. 3.15PSPCh. 3.7 - Using the same reaction, calculate the mass of...Ch. 3.7 - At high temperatures, silicon dioxide reacts with...Ch. 3.7 - Urea is used as a fertilizer because it can react...Ch. 3.8 - Assume the methanol synthesis has an 85.0% yield...Ch. 3.8 - Prob. 3.19PSPCh. 3.8 - Prob. 3.19ECh. 3.8 - Prob. 3.20ECh. 3.9 - Phenol is a compound of carbon, hydrogen, and...Ch. 3.9 - Calcium carbonate forms carbon dioxide and calcium...Ch. 3.10 - Prob. 3.20PSPCh. 3.10 - Prob. 3.23ECh. 3.10 - Prob. 3.24ECh. 3.10 - Prob. 3.25CECh. 3.10 - Describe how you would prepare each solution. 1.00...Ch. 3.10 - Prob. 3.26ECh. 3.10 - Prob. 3.22PSPCh. 3.10 - Prob. 3.27CECh. 3.11 - Prob. 3.23PSPCh. 3.11 - Prob. 3.24PSPCh. 3.11 - Sodium chloride is used in intravenous solutions...Ch. 3.12 - Show that the reaction of KMnO4 with H2O2 is a...Ch. 3.12 - Prob. 3.25PSPCh. 3 - Aqueous solutions of ammonium sulfide and...Ch. 3 - In a blast furnace at high temperature, iron(III)...Ch. 3 - What information does a balanced chemical equation...Ch. 3 - Prob. 2QRTCh. 3 - Prob. 3QRTCh. 3 - Prob. 4QRTCh. 3 - Prob. 5QRTCh. 3 - Prob. 6QRTCh. 3 - When asked, “What is the limiting reactant?” you...Ch. 3 - Prob. 8QRTCh. 3 - Prob. 9QRTCh. 3 - For this reaction, fill in the table with the...Ch. 3 - Prob. 11QRTCh. 3 - Prob. 12QRTCh. 3 - This diagram shows A (blue spheres) reacting with...Ch. 3 - Prob. 14QRTCh. 3 - Prob. 15QRTCh. 3 - Prob. 16QRTCh. 3 - Prob. 17QRTCh. 3 - Prob. 18QRTCh. 3 - Prob. 19QRTCh. 3 - Balance these equations. (a) UO2(s) + HF() UF4(s)...Ch. 3 - Prob. 21QRTCh. 3 - Prob. 22QRTCh. 3 - Prob. 23QRTCh. 3 - Balance these combustion reactions. (a) C6H12O6 +...Ch. 3 - Prob. 25QRTCh. 3 - Prob. 26QRTCh. 3 - Prob. 27QRTCh. 3 - Which substance conducts electricity when...Ch. 3 - Prob. 29QRTCh. 3 - Predict whether each compound is soluble in water....Ch. 3 - Prob. 31QRTCh. 3 - Which drawing is the best nanoscale representation...Ch. 3 - If aqueous solutions of potassium carbonate and...Ch. 3 - If aqueous solutions of potassium sulfide and...Ch. 3 - Prob. 35QRTCh. 3 - Prob. 36QRTCh. 3 - Prob. 37QRTCh. 3 - Prob. 38QRTCh. 3 - Prob. 39QRTCh. 3 - Prob. 40QRTCh. 3 - Prob. 41QRTCh. 3 - Prob. 42QRTCh. 3 - Prob. 43QRTCh. 3 - Prob. 44QRTCh. 3 - Prob. 45QRTCh. 3 - Prob. 46QRTCh. 3 - Prob. 47QRTCh. 3 - Prob. 48QRTCh. 3 - Prob. 49QRTCh. 3 - Prob. 50QRTCh. 3 - Prob. 51QRTCh. 3 - Prob. 52QRTCh. 3 - Prob. 53QRTCh. 3 - Prob. 54QRTCh. 3 - Prob. 55QRTCh. 3 - Prob. 56QRTCh. 3 - Prob. 57QRTCh. 3 - Prob. 58QRTCh. 3 - Nitrogen monoxide is oxidized in air to give brown...Ch. 3 - Prob. 60QRTCh. 3 - The final step in the manufacture of platinum...Ch. 3 - Disulfur dichloride, S2Cl2, is used to vulcanize...Ch. 3 - Prob. 63QRTCh. 3 - Prob. 64QRTCh. 3 - Prob. 65QRTCh. 3 - Prob. 66QRTCh. 3 - Prob. 67QRTCh. 3 - Cisplatin, Pt(NH3)2Cl2, a drug used in the...Ch. 3 - Aluminum chloride, Al2Cl6, is an inexpensive...Ch. 3 - Prob. 70QRTCh. 3 - Prob. 71QRTCh. 3 - Prob. 72QRTCh. 3 - Prob. 73QRTCh. 3 - Quicklime, CaO, is formed when calcium hydroxide...Ch. 3 - Prob. 75QRTCh. 3 - Disulfur dichloride, which has a revolting smell,...Ch. 3 - Prob. 77QRTCh. 3 - Prob. 78QRTCh. 3 - Quinone, which is used in the dye industry and in...Ch. 3 - l-Dopa is a drug used for the treatment of...Ch. 3 - Write the balanced chemical equation for the...Ch. 3 - Prob. 82QRTCh. 3 - Prob. 83QRTCh. 3 - Prob. 84QRTCh. 3 - Prob. 85QRTCh. 3 - Prob. 86QRTCh. 3 - You need 300. mL of 0.500-M K2Cr2O7. Which method...Ch. 3 - You need to make a 0.300-M solution of NiSO4(aq)....Ch. 3 - You wish to make a 0.200-M solution of CuSO4(aq)....Ch. 3 - Prob. 90QRTCh. 3 - Prob. 91QRTCh. 3 - You mix 25.0 mL of 0.234-M FeCl3 solution with...Ch. 3 - A soft drink contains an unknown mass of citric...Ch. 3 - Prob. 94QRTCh. 3 - Prob. 95QRTCh. 3 - Potassium hydrogen phthalate, KHC8H4O4, is used to...Ch. 3 - Prob. 97QRTCh. 3 - Prob. 98QRTCh. 3 - Prob. 99QRTCh. 3 - Prob. 100QRTCh. 3 - Boron forms an extensive series of compounds with...Ch. 3 - Prob. 102QRTCh. 3 - Prob. 103QRTCh. 3 - Prob. 104QRTCh. 3 - Prob. 105QRTCh. 3 - Azurite is a copper-containing mineral that often...Ch. 3 - Prob. 107QRTCh. 3 - Prob. 108QRTCh. 3 - Vitamin C is ascorbic acid, HC6H7O6, which can be...Ch. 3 - Prob. 110QRTCh. 3 - Prob. 111QRTCh. 3 - Prob. 112QRTCh. 3 - Prob. 113QRTCh. 3 - Prob. 114QRTCh. 3 - Prob. 115QRTCh. 3 - Prob. 116QRTCh. 3 - Prob. 117QRTCh. 3 - Prob. 118QRTCh. 3 - Prob. 119QRTCh. 3 - Prob. 120QRTCh. 3 - Ammonia can be formed by a direct reaction of...Ch. 3 - Carbon monoxide burns readily in oxygen to form...Ch. 3 - Prob. 123QRTCh. 3 - Write a balanced chemical equation that represents...Ch. 3 - A student set up an experiment for six different...Ch. 3 - A weighed sample of a metal is added to liquid...Ch. 3 - Prob. 127QRTCh. 3 - Prob. 128QRTCh. 3 - Each box represents a tiny volume in an aqueous...Ch. 3 - Consider the chemical reaction 2 S + 3 O2 → 2 SO3....Ch. 3 - Prob. 131QRTCh. 3 - Prob. 132QRTCh. 3 - Prob. 133QRTCh. 3 - Prob. 134QRTCh. 3 - Prob. 135QRTCh. 3 - Prob. 136QRTCh. 3 - Prob. 137QRTCh. 3 - Prob. 138QRTCh. 3 - Prob. 139QRTCh. 3 - Prob. 140QRTCh. 3 - Prob. 141QRTCh. 3 - Prob. 142QRTCh. 3 - In a reaction, 1.2 g element A reacts with exactly...Ch. 3 - Prob. 144QRTCh. 3 - When solutions of silver nitrate and sodium...Ch. 3 - Nickel metal reacts with aqueous silver nitrate in...Ch. 3 - Prob. 147QRTCh. 3 - Prob. 148QRTCh. 3 - Prob. 149QRTCh. 3 - Prob. 150QRTCh. 3 - A mountain lake that is 4.0 km × 6.0 km with an...Ch. 3 - Prob. 152QRTCh. 3 - Prob. 153QRTCh. 3 - Prob. 154QRTCh. 3 - Prob. 155QRTCh. 3 - Ethanol, C2H5OH, is a gasoline additive that can...Ch. 3 - Prob. 157QRTCh. 3 - Prob. 3.ACPCh. 3 - Prob. 3.BCPCh. 3 - Prob. 3.DCPCh. 3 - Prob. 3.ECPCh. 3 - Prob. 3.FCPCh. 3 - Prob. 3.GCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY