Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
8th Edition
ISBN: 9780134421377
Author: Charles H Corwin
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 68E
Interpretation Introduction
Interpretation:
Whether there is an increase or decrease in the motion of hydrogen molecules on decreasing the temperature from
Concept introduction:
Kinetic energy is related to the translational motion of the system with respect to some reference. It is defined as the energy that an object has as a result of its motion.
The matter has three physical states, solid, liquid and gas. The particles in solid state have strong intermolecular forces of attraction between them, whereas the particles in the gaseous state have lowest intermolecular forces of attraction between them.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 276.6g sample of water at -13.5 Celsius is taken to a final temperature of 14.46 Celsius. How much energy was removed removed from the sample?
2. As energy is added to a substance, the temperature remains constant. How may the substance
be changing? ,
A sample of iron was heated to99.5°C, then placed into75.0g of water at19.5°C. The temperature of the water rose to23.5 °C. How many grams of iron were in the sample?
Chapter 3 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
Ch. 3 - Prob. 1CECh. 3 - Prob. 2CECh. 3 - Prob. 3CECh. 3 - Prob. 4CECh. 3 - Prob. 5CECh. 3 - Prob. 6CECh. 3 - Prob. 7CECh. 3 - Prob. 8CECh. 3 - Prob. 9CECh. 3 - Prob. 10CE
Ch. 3 - Prob. 11CECh. 3 - Prob. 12CECh. 3 - Prob. 1KTCh. 3 - Prob. 2KTCh. 3 - Prob. 3KTCh. 3 - Prob. 4KTCh. 3 - Prob. 5KTCh. 3 - Prob. 6KTCh. 3 - Prob. 7KTCh. 3 - Prob. 8KTCh. 3 - Prob. 9KTCh. 3 - Prob. 10KTCh. 3 - Prob. 11KTCh. 3 - Prob. 12KTCh. 3 - Prob. 13KTCh. 3 - Prob. 14KTCh. 3 - Prob. 15KTCh. 3 - Prob. 16KTCh. 3 - Prob. 17KTCh. 3 - Prob. 18KTCh. 3 - Prob. 19KTCh. 3 - Prob. 20KTCh. 3 - Prob. 21KTCh. 3 - Prob. 22KTCh. 3 - Prob. 23KTCh. 3 - Prob. 24KTCh. 3 - Prob. 25KTCh. 3 - Prob. 26KTCh. 3 - Prob. 27KTCh. 3 - Prob. 28KTCh. 3 - Prob. 29KTCh. 3 - Prob. 30KTCh. 3 - Prob. 1ECh. 3 - Prob. 2ECh. 3 - Prob. 3ECh. 3 - Prob. 4ECh. 3 - Prob. 5ECh. 3 - Prob. 6ECh. 3 - Prob. 7ECh. 3 - Prob. 8ECh. 3 - Prob. 9ECh. 3 - Prob. 10ECh. 3 - Prob. 11ECh. 3 - Prob. 12ECh. 3 - Prob. 13ECh. 3 - Prob. 14ECh. 3 - Prob. 15ECh. 3 - Prob. 16ECh. 3 - Prob. 17ECh. 3 - Prob. 18ECh. 3 - Prob. 19ECh. 3 - Prob. 20ECh. 3 - Prob. 21ECh. 3 - Prob. 22ECh. 3 - Prob. 23ECh. 3 - Prob. 24ECh. 3 - Prob. 25ECh. 3 - Prob. 26ECh. 3 - Prob. 27ECh. 3 - Prob. 28ECh. 3 - Prob. 29ECh. 3 - Prob. 30ECh. 3 - Prob. 31ECh. 3 - Prob. 32ECh. 3 - Prob. 33ECh. 3 - Prob. 34ECh. 3 - Prob. 35ECh. 3 - Prob. 36ECh. 3 - Prob. 37ECh. 3 - Prob. 38ECh. 3 - Prob. 39ECh. 3 - Prob. 40ECh. 3 - Prob. 41ECh. 3 - Prob. 42ECh. 3 - Prob. 43ECh. 3 - Prob. 44ECh. 3 - Prob. 45ECh. 3 - Prob. 46ECh. 3 - Prob. 47ECh. 3 - Prob. 48ECh. 3 - Prob. 49ECh. 3 - Prob. 50ECh. 3 - Prob. 51ECh. 3 - Prob. 52ECh. 3 - Prob. 53ECh. 3 - Prob. 54ECh. 3 - Prob. 55ECh. 3 - Prob. 56ECh. 3 - Prob. 57ECh. 3 - Prob. 58ECh. 3 - Prob. 59ECh. 3 - Prob. 60ECh. 3 - Prob. 61ECh. 3 - Prob. 62ECh. 3 - Prob. 63ECh. 3 - Prob. 64ECh. 3 - Prob. 65ECh. 3 - Prob. 66ECh. 3 - Prob. 67ECh. 3 - Prob. 68ECh. 3 - Prob. 69ECh. 3 - Prob. 70ECh. 3 - Prob. 71ECh. 3 - Prob. 72ECh. 3 - Prob. 73ECh. 3 - Prob. 74ECh. 3 - Prob. 75ECh. 3 - Prob. 76ECh. 3 - Prob. 77ECh. 3 - Prob. 78ECh. 3 - Prob. 79ECh. 3 - Prob. 80ECh. 3 - Prob. 81ECh. 3 - Prob. 82ECh. 3 - Prob. 83ECh. 3 - Prob. 84ECh. 3 - Prob. 85ECh. 3 - Prob. 86ECh. 3 - Prob. 87ECh. 3 - Prob. 88ECh. 3 - Prob. 89ECh. 3 - Prob. 90ECh. 3 - Prob. 91ECh. 3 - Prob. 92ECh. 3 - Prob. 93ECh. 3 - Prob. 94ECh. 3 - Prob. 95ECh. 3 - Prob. 96ECh. 3 - Prob. 1STCh. 3 - Prob. 2STCh. 3 - Prob. 3STCh. 3 - Prob. 4STCh. 3 - Prob. 5STCh. 3 - Prob. 6STCh. 3 - Prob. 7STCh. 3 - Prob. 8STCh. 3 - Prob. 9STCh. 3 - Prob. 10STCh. 3 - Prob. 11STCh. 3 - Prob. 12STCh. 3 - Prob. 13STCh. 3 - Prob. 14STCh. 3 - Prob. 15STCh. 3 - Prob. 16STCh. 3 - Prob. 17STCh. 3 - Prob. 18STCh. 3 - Prob. 19STCh. 3 - Prob. 20ST
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Define the joule in terms of SI base units.arrow_forwardIf 14.5 kJ of heat were added to 485 g of liquid water, how much would its temperature increase?arrow_forwardYou heat 1.000 quart of water from 25.0C to its normal boiling point by burning a quantity of methane gas, CH4. What volume of methane at 23.0C and 745 mmHg would you require to heat this quantity of water, assuming that the methane is completely burned? The products are liquid water and gaseous carbon dioxide.arrow_forward
- A 2.8 L balloon is warmed over a toaster, and its temperature rises from 25Cto45C. What is its final volume?arrow_forwardIf 100. J of heat energy is applied to a 25-g sample of mercury, by how many degrees will the temperature of the sample of mercury increase? (See Table 10.1.)arrow_forwardDuring a recent winter month in Sheboygan, Wisconsin, it was necessary to obtain 3500 kWh of heat provided by a natural gas furnace with 89% efficiency to keep a small house warm (the efficiency of a gas furnace is the percent of the heat produced by combustion that is transferred into the house). (a) Assume that natural gas is pure methane and determine the volume of natural gas in cubic feet that was required to heat the house. The average temperature of the natural gas was 56 F; at this temperature and a pressure of 1 atm, natural gas has a density of 0.68 1 g/L. (b) How many gallons of LPG (liquefied petroleum gas) would be required to replace the natural gas used? Assume the LPG is liquid propane [ C3H8 : density, 0.5318 g/mL; enthalpy of combustion, 2219 Id/mo for the formation of CO2(g) and H2O(l) ] and the furnace used to burn the LPG has the same efficiency as the gas furnace. (c) What mass of carbon dioxide is produced by combustion of the methane used to heat the house? (d) What mass of water is produced by combustion of the methane used to heat the house? (e) What volume of air is required to provide the oxygen for the combustion of the methane used to heat the house? Air contains 23% oxygen by mass. The average density of air during the month was 1.22 g/L. (f) How many kilowatt—hours ( 1kWh=3.6106 J) of electricity would be required to provide the heat necessary to heat the house? Note electricity is 100% efficient in producing heat inside a house. (g) Although electricity is 100% efficient in producing heat inside a house, production and distribution of electricity is not 100% efficient. The efficiency of production and distribution of electricity produced in a coal-fired power plant is about 40%. A certain type of coal provides 2.26 kWh per pound upon combustion. What mass of this coal in kilograms will be required to produce the electrical energy necessary to heat the house if the efficiency of generation and distribution is 40%?arrow_forward
- A 45-g aluminum spoon (specific heat 0.88 J/g C) at 24 C is placed in 180 mL (180 g) of coffee at 85 C and the temperature of the two become equal. (a) What is the final temperature when the two become equal? Assume that coffee has the same specific heat as water. (b) The first time a student solved this problem she got an answer of 88 C. Explain why this is clearly an incorrect answer.arrow_forwardA 50g sample of an unknown metal is heated with 800 joules. If the temperature of the metal increases by 41.6 oC, what is the identity of the unknown metal?arrow_forwardYour baby brother is toddling around the house, playing with a toy balloon. You decide to teach him something about physics, so you take the balloon away from him and hide it in the freezer. (His cries are enough to convince you that he is excited about this learning experience.) a) If the temperature inside your house is 25° Celsius, while the temperature inside the freezer is -10° Celsius, then by what percentage will the volume of the balloon change? We will take the pressure inside the balloon as constant. When you put the balloon in the refrigerator, it will shrink. (Try it and see!) c) Sketch a p-V diagram for the gas inside the balloon as it cools inside the regrigerator. Label the axes as completely as possible according to the given information.arrow_forward
- 2. Two students weigh a gelatin capsule (0.112g). Next they add pieces of aluminum-zinc alloy to the capsule and weigh the capsule and alloy (0.271g). They weigh out an empty beaker (141.209) and begin the experiment. After the reaction, they determine the mass of the beaker (with displaced water) to be 307.712g. The temperature of the water was 21 degrees Celsius and the barometric pressure was 745.9 mmHg. Fill the calculation section of the table on the following page.arrow_forwardDuring a recent winter month in Sheboygan, Wisconsin, it was necessary to obtain 3500 kWh of heat provided by a natural gas furnace with 89% efficiency to keep a small house warm (the efficiency of a gas furnace is the percent of the heat produced by combustion that is transferred into the house). (a) Assume that natural gas is pure methane and determine the volume of natural gas in cubic feet that was required to heat the house. The average temperature of the natural gas was 56 °F; at this temperature and a pressure of 1 atm, natural gas has a density of 0.681 g/L. (b) How many gallons of LPG (liquefied petroleum gas) would be required to replace the natural gas used? Assume the LPG is liquid propane [C3H8: density, 0.5318 g/mL; enthalpy of combustion, 2219 kJ/mol for the formation of CO2(g) and H2O(l)] and the furnace used to burn the LPG has the same efficiency as the gas furnace. (c) What mass of carbon dioxide is produced by combustion of the methane used to heat the house? (d)…arrow_forwardIn the laboratory a student finds that it takes 48.7 calories to increase the temperature of 11.6 grams of gaseous neon from 20.3 to 38.7 degrees Celsius. Based on these data, what is the specific heat of neon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
GCSE Chemistry - Differences Between Compounds, Molecules & Mixtures #3; Author: Cognito;https://www.youtube.com/watch?v=jBDr0mHyc5M;License: Standard YouTube License, CC-BY