Concept explainers
(a)
The speed and magnitude of the acceleration of a person standing on the equator.
(a)
Answer to Problem 67P
A person standing on the equator has a speed
Explanation of Solution
Given:
Time taken by the Earth to rotate once on its axis,
Radius of the Earth,
Formula used:
The speed
The person on the equator experiences a centripetal acceleration
The total acceleration at the equator is given by,
Calculation:
A person standing on the equator, revolves in a circular path of radius
Calculate speed
All particles fixed on the Earth experience a centripetal force directed towards the center of its circular path. Hence it would experience a centripetal acceleration towards the center of its circular path.
Calculate the centripetal acceleration
Express the acceleration as a percentage of
The total acceleration experienced by the person is given by equation (3).
Conclusion:
Thus, a person standing on the equator has a speed
(b)
The direction of the acceleration vector of the person on the equator.
(b)
Answer to Problem 67P
The acceleration vector of the person is directed towards the center of the Earth.
Explanation of Solution
Introduction:
A person on the surface of the Earth experiences two forces-(i) Gravitational force
An object in order to move in a circular path requires
Figure 1
However, the weight, as felt by the person on the surface of the earth, is equal to the Normal force he experiences.
Hence, the acceleration
Conclusion:
Thus, the acceleration vector of the person on the Equator is directed towards the center of the Earth.
(c)
The speed and magnitude of the acceleration of a person standing at
(c)
Answer to Problem 67P
The speed of the person at
Explanation of Solution
Given:
The latitude where the person was standing,
Radius of the earth at equator,
The speed of the person at equator,
The centripetal acceleration at the equator,
Formula used:
The person at
The speed of person at
His speed at equator is given by
From equations (4) and (5),
The centripetal acceleration at the equator is given by the expression,
The centripetal acceleration at
From equations (4) and (5),
The person also experiences acceleration
The magnitude of the resultant acceleration is determined by using parallelogram law of vectors.
Calculation:
The motion of the person at
Figure 2
From Figure 2, it can be seen that
Use equation (11) in equation (6).
Substitute the value of the variables in the above equation.
Use equation (11) in equation (9) and substitute the values of the variables to calculate the value of
The vector
Substitute the values of variables in equation (10) and calculate the magnitude of the resultant acceleration
Conclusion:
Thus, the speed of the person at
(d)
The angle between the direction of the acceleration at
(d)
Answer to Problem 67P
The angle between the direction of the acceleration at
Explanation of Solution
Given:
The magnitude of centripetal acceleration at
The value of acceleration of free fall,
The latitude where the person was standing,
Formula used:
The direction of the acceleration at the equator is along the horizontal direction parallel to the direction of the centripetal acceleration at
Hence the angle
The vector diagram representing the accelerations is shown below:
Figure 3
This is given by
Calculation:
Substitute the values of the variables in equation (12).
Conclusion:
Thus, the angle between the direction of the acceleration at
Want to see more full solutions like this?
Chapter 3 Solutions
Physics for Scientists and Engineers
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University