Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 65P
To determine
The magnitude of acceleration of the minute hand.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a = 15.0 m/s²
4. The Figure represents the total acceleration of a particle
moving clockwise in a circle of radius 2.50 mat a certain instant
of time. For that instant, find (a) the radial acceleration of the
particle, (b) the speed of the particle, and (c) its tangential
acceleration
2.50 m
30.0°
The velocity of a particle is V and is constant. It moves counterclockwise on a circle with center "O" and radius R.
Draw the circle. When the particle is in the vector R position, draw vector R, vector V, vector A, and vector da/dt(time derivative of acceleration).
A particle moves in a curve path according to
the law s = t^3 – 40t^2 + 8t + 100 where s is in
meter and t is in sec. What is the normal
component of acceleration of the particle if t =
5 seconds and the radius of the curve path is
10 meters?
Chapter 3 Solutions
Physics for Scientists and Engineers
Ch. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116PCh. 3 - Prob. 117PCh. 3 - Prob. 118PCh. 3 - Prob. 119PCh. 3 - Prob. 120PCh. 3 - Prob. 121PCh. 3 - Prob. 122P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A squirrel runs along an overhead telephone wire that stretches from the top of one pole to the next. It is initially at position x: = 2.01 m, as measured from the center of the wire segment. It then undergoes a displacement of Ax = -6.// m. What is the ' sauirrel's final position xe?arrow_forwardA particles position and path at any given time is given by y = -2t2+10t (m) and x = t2 +1 (m) and t is in seconds. Determine the velocity, acceleration, and radius of curvature of the particle when t=1 second. Then sketch the velocity and acceleration vectors as well as the direction of the radius of curvature with appropriate n-t coordinates.arrow_forwardFigure P3.31 represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 m at a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration.arrow_forward
- In the case of uniform circular motion the magnitude of the acceleration is constant. O True Falsearrow_forwardA particle travels clockwise around a circular path as shown below. The speed of the particle is given as a function of position s, such that v(s) = (s^2 ) m⁄sec where position is measured in meters. The radius of the circle is 1 m. What is the magnitude of the acceleration of the particle at the position s = 1 m?arrow_forwardIn a laboratory test of tolerance for high acceleration, a pilot is swung in a circle 11.5 m in diameter. It is found that the pilot blacks out when he is spun at 30.6 rpm (rev/min). At what acceleration (in SI units) does the pilot black out? Express this acceleration in terms of a multiple of g. If you want to decrease the acceleration by 13.0% without changing the diameter of the circle, by what percent must you change the time for the pilot to make one circle? acceleration: acceleration as a multiple of g: percent of time change: m/s² %arrow_forward
- A car leaves a stop sign and exhibits a constant acceleration of 0.300 m/s2 parallel to the roadway. The car passes over a rise in the roadway such that the top of the rise is shaped like an arc of a circle of radius 500 m. At the moment the car is at the top of the rise, its velocity vector is horizontal and has a magnitude of 6.00 m/s. What are the magnitude and direction of the total acceleration vector for the car at this instant?arrow_forwardProblem 1: The acceleration vector of a particle is giving by a = -27 t2 j m/s“. The particle is located at the origin at t = 0 s and has an initial velocity V. = 2(m/s) i + 3(m/s) j. Find: 1. The velocity of the particle as a function of time. 2. The maximum height the particle reaches.arrow_forwardArotating fan completes 1180 revolutions every minute. Consider the tip of a blade, at a radius of 20.0 cm. (a) Through what distance does the tip move in one revolution? What are (b) the tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion? (c) Number i Units (d) Number i Unitsarrow_forward
- The velocity of a particle is V and is constant. It moves counterclockwise on a circle with center "O" and radius R. Derivative of acceleration with respect to time; Find as a function of Ɵ, R, V, and the unit vectors (x^ , y^) in the x and y directions. Hint: a = -V^2/R(cosƟx^+ sinƟy^) and dƟ/dt= V/Rarrow_forwardStarting from rest, a car speeds up along a curve at a rate of 2.00 m/s ^ 2 . If the curve has a radius of 20.0 m, what is the acceleration (both magnitude and direction ) of the car 5.00 s after starting ?arrow_forwardStarting from rest, the motorboat travels around the circular path, ρ = 50 m, at a speed v=(0.2t^2)m/s, where t is in seconds. (Figure 1) A) Determine the magnitude of the boat's velocity at the instant t = 3 s. Express your answer to three significant figures and include the appropriate units. B)Determine the magnitude of the boat's acceleration at the instant t = 3 s. Express your answer to three significant figures and include the appropriate units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY