
Concept explainers
(a)
The total time of flight of the ball as observed by the juggler in the train.
(a)

Answer to Problem 64P
The total time of flight of the ball as observed by the juggler in the train is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
Formula used:
To determine the time of flight
Here,
Calculation:
The ball thrown in a train and the juggler are at rest with respect to the train. Choose a one dimensional coordinate system with the origin on the train and the positive y axis directed upwards. As the ball moves up and returns to the juggler’s hands, its displacement
Therefore,
Substitute these values in equation (1) and calculate the time of flight.
Conclusion:
Thus, the total time of flight of the ball as observed by the juggler in the train is found to be
(b)
The displacement of the ball during its rise as observed by the juggler.
(b)

Answer to Problem 64P
The displacement of the ball during its rise as observed by the juggler, is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
Formula used:
To determine the displacement of the ball , the following equation of motion may be used.
Calculation:
As the ball moves upwards, it slows down due to the action of the Earth’s gravitational force. At the top most point of its trajectory, is instantaneous velocity v becomes zero.
Substitute the values of variables in the equation (2) and solve for
Conclusion:
Thus, the displacement of the ball during its rise as observed by the juggler, is found to be
(c)
The ball’s initial speed as observed by the friend on the ground.
(c)

Answer to Problem 64P
The ball’s initial speed as observed by the friend on the ground is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
The velocity of the train relative to the ground
Formula used:
Using a coordinate system with the origin at the ground and the positive x axis along East, a vector diagram is constructed.
Figure 1
The person on the ground observes the ball to have a velocity
Calculation:
Substitute the values of variables in equation (3) and calculate the speed of the ball as observed by the person on the ground.
Conclusion:
Thus, the ball’s initial speed as observed by the friend on the ground is found to be
(d)
The angle of launch of the ball as observed by the person on the ground.
(d)

Answer to Problem 64P
The angle of launch of the ball as observed by the person on the ground
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
The velocity of the train relative to the ground
Formula used:
Use Figure 1 to calculate the angle
Calculation:
Substitute the values of the variables in equation (4) and calculate the angle of launch of the ball as observed by the person on the ground.
Conclusion:
Thus, the angle of launch of the ball as observed by the person on the ground
(e)
The displacement of the ball during its rise as observed by the person on the ground.
(e)

Answer to Problem 64P
The displacement of the ball during its rise as observed by the person on the ground is found to be
Explanation of Solution
Given:
The initial velocity of the ball relative to the train
The velocity of the train relative to the ground
Formula used:
The displacement of the ball as seen by the person on the ground is given by the expression,
Here,
From Figure 1, it can be seen that the initial velocity
The time
The horizontal component of the ball’s velocity remains constant, since no force acts along the horizontal direction. While, since the acceleration of free fall acts downwards, the vertical component of the ball’s velocity varies with time.
The values of
Calculation:
The trajectory of the ball as seen by the person on the ground is shown in the diagram below;
At the top most point of its trajectory, the vertical component of the ball’s velocity becomes equal to zero. Use equation (7) and calculate the time taken by the ball to reach the top most point of its trajectory.
Calculate the value of
Calculate the value of
Substitute the values of
Conclusion:
Thus, the displacement of the ball during its rise as observed by the person on the ground is found to be
Want to see more full solutions like this?
Chapter 3 Solutions
Physics for Scientists and Engineers
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





