Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 109P
(a)
To determine
The radius of the smallest circle.
(b)
To determine
The time taken by the person to go halfway around the minimum radius circle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At the equator, the radius of the Earth is approximately 6370 km. A plane flies at a very low altitude at a constant speed of v = 278 m/s. Upon landing, the plane can produce an average deceleration of a = 21 m/s2.
What is the numeric value for the minimum landing distance, d (in meters), this plane needs to come to rest? Assume that when the plane touches the ground it is moving at the same speed as it was when it was flying.
In a laboratory test of tolerance for high acceleration, a pilot is swung in a circle 11.5 m in diameter. It is found that the pilot
blacks out when he is spun at 30.6 rpm (rev/min).
At what acceleration (in SI units) does the pilot black out?
Express this acceleration in terms of a multiple of g.
If you want to decrease the acceleration by 13.0% without
changing the diameter of the circle, by what percent must you
change the time for the pilot to make one circle?
acceleration:
acceleration as a multiple of g:
percent of time change:
m/s²
%
(a) What is the magnitude of the centripetal acceleration of an object on Earth’s equator due to the rotation of Earth? (b) What would Earth’s rotation period have to be for objects on the equator to have a centripetal acceleration of magnitude 9.8 m/s2?
Chapter 3 Solutions
Physics for Scientists and Engineers
Ch. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Prob. 105PCh. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Prob. 113PCh. 3 - Prob. 114PCh. 3 - Prob. 115PCh. 3 - Prob. 116PCh. 3 - Prob. 117PCh. 3 - Prob. 118PCh. 3 - Prob. 119PCh. 3 - Prob. 120PCh. 3 - Prob. 121PCh. 3 - Prob. 122P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An astronaut is rotated in a horizontal centrifuge at a radius of 5.0 m. (a) What is the astronaut’s speed if the centripetal acceleration has a magnitude of 7.0g? (b) How many revolutions per minute are required to produce this acceleration? (c) What is the period of the motion?arrow_forwardA pilot can withstand an acceleration of up to 9g, which is about 88 m/s2, before blacking out. What is the acceleration experienced by a pilot flying in a circle of constant radius at a constant speed of 525 m/s if the radius of the circle is 2510 m?arrow_forwardTo anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top C of the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Compute the total acceleration in m/s^2 at C. 60 m В 60 m A A) 3.69 2.66 2.73 D) 3.08 E) 2.96arrow_forward
- A particle moves along a circular path having a radius of 3.13 m. At an instant when the speed of the particle is equal to 6.29 m/s and changing at the rate of 6.02 m/s?, what is the magnitude of the total acceleration of the particle? Round your answer to 1 decimal place.arrow_forwardAn airplane in a holding pattern flies at constant altitude along a circular path of radius 3.42 km. If the airplane rounds half the circle in 172 s, determine the following. (a)Determine the magnitude of the airplane's displacement during the given time (in m). (b)Determine the magnitude of the airplane's average velocity during the given time (in m/s). (c)What is the airplane's average speed during the same time interval (in m/s)?arrow_forwardA jet fighter pilot knows he is able to withstand an acceleration of 9g before blacking out. The pilot points his plane vertically down while travelling at Mach 3 speed and intends to pull up in a circular maneuver before crashing into the ground. (a) Where does the maximum acceleration occur in the maneuver? (b) what is the minimum radius the pilot can take?arrow_forward
- Diwata-1 (aka PHL-Microstat-1) was launched to the International Space Station on March 23, 2016. It was the first Philippine microsatellite and the first satellite built and designed by Filipinos. This was released at a height of 400 kilometers above the Earth’s surface. Assuming a circular orbit, (a) how many hours does it take this satellite to make one orbit? (b) How fast (in m/s) is the Diwata-1 moving?arrow_forwardAt the equator, the radius of the Earth is approximately 6370 km. A jet flies at a very low altitude at a constant speed of v = 245 m/s. Upon landing, the jet can produce an average deceleration of a = 15.5 m/s2. How long will it take the jet, in seconds, to circle the Earth at the equator? t = What is the numeric value for the minimum landing distance, d (in meters), this jet needs to come to rest? Assume that when the jet touches the ground it is moving at the same speed as it was when it was flying. d =arrow_forwardAn Aston Martin V8 Vantage sports car has a "lateral acceleration" of 7m/s2. This is the maximum centripetal acceleration the car can sustain without skidding out of a curve path. If the car is traveling at a constant 31m/s on level ground, what is the radius R of the tightest unbanked curved it can negotiate?arrow_forward
- In a laboratory test of tolerance for high acceleration, a pilot is swung in a circle 12.0 m in diameter. It is found that the pilot blacks out when he is spun at 30.6 rpm (rev/min). At what acceleration (in SI units) does the pilot black out? acceleration: m/s? Express this acceleration in terms of a multiple of g. acceleration as a multiple of g: If you want to decrease the acceleration by 19.0% without changing the diameter of the circle, by what percent must you change the time for the pilot to make one circle? percent of time change: %arrow_forwardIf you are sitting at the equator on Earth, what would your average speed be knowing that the radius of the Earth is 6.37 x 106 m? What would your acceleration on Earth be?arrow_forwardA ball is traveling at a constant speed (v) of 40.0 m/s in a circle with a radius (r) of 6.0 m. (Hint: The circumference C = 2πr) The centripetal acceleration is ZERO a. False b. True The total distance traveled by the ball is: How long in time does it take for the ball complete one circle? The displacement traveled by the ball is: The average speed of the ball is: The average velocity of the ball is:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY