(a) Use the distance and velocity data in Figure 3.64 to find the rate of expansion as a function of distance. (b) If you extrapolate back in time, how long ago would all of the galaxies have been at approximately the same position? The two parts of this problem give you some idea of how the Hubble constant for universal expansion and the time back to the Big Bang are determined, respectively. Figure 3.64 Five galaxies on a straight line, showing their distances and velocities relative to the Milky Way (MW) Galaxy. The distances are in millions of light years (Mly), where a light year is the distance light travels in one year. The velocities are nearly proportional to the distances. The sizes of the galaxies are greatly exaggerated; an average galaxy is about 0.1 MlY across.
(a) Use the distance and velocity data in Figure 3.64 to find the rate of expansion as a function of distance. (b) If you extrapolate back in time, how long ago would all of the galaxies have been at approximately the same position? The two parts of this problem give you some idea of how the Hubble constant for universal expansion and the time back to the Big Bang are determined, respectively. Figure 3.64 Five galaxies on a straight line, showing their distances and velocities relative to the Milky Way (MW) Galaxy. The distances are in millions of light years (Mly), where a light year is the distance light travels in one year. The velocities are nearly proportional to the distances. The sizes of the galaxies are greatly exaggerated; an average galaxy is about 0.1 MlY across.
(a) Use the distance and velocity data in Figure 3.64 to find the rate of expansion as a function of distance. (b) If you extrapolate back in time, how long ago would all of the galaxies have been at approximately the same position? The two parts of this problem give you some idea of how the Hubble constant for universal expansion and the time back to the Big Bang are determined, respectively.
Figure 3.64 Five galaxies on a straight line, showing their distances and velocities relative to the Milky Way (MW) Galaxy. The distances are in millions of light years (Mly), where a light year is the distance light travels in one year. The velocities are nearly proportional to the distances. The sizes of the galaxies are greatly exaggerated; an average galaxy is about 0.1 MlY across.
Solve it correctly please. I will rate accordingly with multiple votes.
Q3.3 Please answer the following question throughly and detailed. Need to understand the concept.
A particle has γ=18,399.
a) Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.)
If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation.
b) In a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.)
If a massless particle has momentum 1,739 MeV/c, calculate its energy in MeV.
Thank you so much!!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.