You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to fly straight south and then straight west to arrive at the same point. (This determination is equivalent to finding the components of the displacement along the south and west directions.) (b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. These are the components of the displacement along a different set of axes—one rotated 450°.
You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to fly straight south and then straight west to arrive at the same point. (This determination is equivalent to finding the components of the displacement along the south and west directions.) (b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. These are the components of the displacement along a different set of axes—one rotated 450°.
You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to fly straight south and then straight west to arrive at the same point. (This determination is equivalent to finding the components of the displacement along the south and west directions.) (b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. These are the components of the displacement along a different set of axes—one rotated 450°.
You fly 32.0 km in a straight line in still air in the direction 35.0° south of west. (a) Find the distances you would have to fly due south and then due west to arrive at the same point. (b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. Note these are the components of the displacement along a different set of axes—namely, the one rotated by 45° with respect to the axes in (a).
ANSWER QUICK!
Instructions for finding buried treasure include the following: Go 71.0 paces at 256 degrees, turn to 133 degrees and walk 123 paces, then travel 110. paces at 157 degrees. The angles are measured counterclockwise from an axis pointing to the east, which we take as the x direction. Determine the resultant displacement from the starting point. Enter the distance in paces (without units) and the angle in degrees relative to the positive x-axis.
Find the distance and the angle
One afternoon, a couple walks three-fourths of the way around a circular lake, the radius of which is 1.95 km. They start at the west side of the lake and head due south to begin with. (a) What is the distance they travel? (b) What is the magnitude of the couple’s displacement? (c) What is the direction (relative to due east) of the couple’s displacement?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.