Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 60P
A dam is to be constructed using the cross-section shown. Assume the dam width is w = 160 ft. For water height H = 9 ft, calculate the magnitude and line of action of the vertical force of water on the dam face. Is it possible for water forces to overturn this dam? Under what circumstances will this happen?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1
1. The rectangular gate below is 3 m long by 4 m wide (into the page). Obtain the
force magnitude Q so that the gate remains closed as shown. The specific weight
of the water is yw = 9.81 kN/m³.
Patm
hinge
water at rest
1.5 m
rectangular gate
60°
3 m
no connection
The 2-m wide gate ab depicted on the right retains water 3 m deep. Determine the horizontal and vertical forces on the gate, then calculate magnitude and direction of the resultant force on the gate.
Chapter 3 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 3 - Because the pressure falls, water boils at a lower...Ch. 3 - Ear popping is an unpleasant phenomenon sometimes...Ch. 3 - When you are on a mountain face and boil water,...Ch. 3 - Your pressure gauge indicates that the pressure in...Ch. 3 - A 125-mL cube of solid oak is held submerged by a...Ch. 3 - The tube shown is filled with mercury at 20C....Ch. 3 - Calculate the absolute and gage pressure in an...Ch. 3 - An open vessel contains carbon tetrachloride to a...Ch. 3 - A hollow metal cube with sides 100 mm floats at...Ch. 3 - Compressed nitrogen (140 lbm) is stored in a...
Ch. 3 - If at the surface of a liquid the specific weight...Ch. 3 - In the deep ocean the compressibility of seawater...Ch. 3 - Assuming the bulk modulus is constant for sea...Ch. 3 - An inverted cylindrical container is lowered...Ch. 3 - A water tank filled with water to a depth of 16 ft...Ch. 3 - A partitioned tank as shown contains water and...Ch. 3 - Consider the two-fluid manometer shown. Calculate...Ch. 3 - The manometer shown contains water and kerosene....Ch. 3 - Determine the gage pressure in kPa at point a, if...Ch. 3 - With the manometer reading as shown, calculate px....Ch. 3 - Calculate px py for this inverted U-tube...Ch. 3 - An inclined gauge having a tube of 3-mm bore, laid...Ch. 3 - Water flows downward along a pipe that is inclined...Ch. 3 - A reservoir manometer has vertical tubes of...Ch. 3 - A rectangular tank, open to the atmosphere, is...Ch. 3 - The sketch shows a sectional view through a...Ch. 3 - The manometer reading is 6 in. when the funnel is...Ch. 3 - A reservoir manometer is calibrated for use with a...Ch. 3 - The inclined-tube manometer shown has D = 96 mm...Ch. 3 - The inclined-tube manometer shown has D = 76 mm...Ch. 3 - A barometer accidentally contains 6.5 inches of...Ch. 3 - A water column stands 50 mm high in a 2.5-mm...Ch. 3 - Consider a small-diameter open-ended tube inserted...Ch. 3 - Compare the height due to capillary action of...Ch. 3 - If atmospheric pressure at the ground is 101.3 kPa...Ch. 3 - If the temperature in the atmosphere is assumed to...Ch. 3 - A hydropneumatic elevator consists of a...Ch. 3 - Semicircular plane gate AB is hinged along B and...Ch. 3 - A circular gate 3 m in diameter has its center 2.5...Ch. 3 - For the situation shown, find the air pressure in...Ch. 3 - What is the pressure at A? Draw a free body...Ch. 3 - A plane gate of uniform thickness holds back a...Ch. 3 - A rectangular gate (width w = 2 m) is hinged as...Ch. 3 - Gates in the Poe Lock at Sault Ste. Marie,...Ch. 3 - Calculate the minimum force P necessary to hold a...Ch. 3 - Calculate magnitude and location of the resultant...Ch. 3 - Calculate magnitude and location of the resultant...Ch. 3 - A window in the shape of an isosceles triangle and...Ch. 3 - A large open tank contains water and is connected...Ch. 3 - The circular access port in the side of a water...Ch. 3 - The gate AOC shown is 6 ft wide and is hinged...Ch. 3 - The gate shown is hinged at H. The gate is 3 m...Ch. 3 - For the dam shown, what is the vertical force of...Ch. 3 - The parabolic gate shown is 2 m wide and pivoted...Ch. 3 - An open tank is filled with water to the depth...Ch. 3 - A dam is to be constructed using the cross-section...Ch. 3 - The quarter cylinder AB is 10 ft long. Calculate...Ch. 3 - Calculate the magnitude, direction (horizontal and...Ch. 3 - A hemispherical shell 1.2 m in diameter is...Ch. 3 - A cylindrical weir has a diameter of 3 m and a...Ch. 3 - If you throw an anchor out of your canoe but the...Ch. 3 - A hydrometer is a specific gravity indicator, the...Ch. 3 - A cylindrical can 76 mm in diameter and 152 mm...Ch. 3 - If the 10-ft-long box is floating on the oil-water...Ch. 3 - The timber weighs 40 lb/ft3 and is held in a...Ch. 3 - Find the specific weight of the sphere shown if...Ch. 3 - The fat-to-muscle ratio of a person may be...Ch. 3 - An open tank is filled to the top with water. A...Ch. 3 - If the timber weighs 670 N, calculate its angle of...Ch. 3 - The barge shown weighs 40 tons and carries a cargo...Ch. 3 - Quantify the experiment performed by Archimedes to...Ch. 3 - Hot-air ballooning is a popular sport. According...Ch. 3 - It is desired to use a hot air balloon with a...Ch. 3 - The opening in the bottom of the tank is square...Ch. 3 - A balloon has a weight (including crew but not...Ch. 3 - A helium balloon is to lift a payload to an...Ch. 3 - The stem of a glass hydrometer used to measure...Ch. 3 - A sphere of radius R is partially immersed to...Ch. 3 - A sphere of 1-in.-radius made from material of...Ch. 3 - You are in the Bermuda Triangle when you see a...Ch. 3 - Three steel balls (each about half an inch in...Ch. 3 - A proposed ocean salvage scheme involves pumping...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the force in each of the cables AB and AC as a function of . If the maximum tension allowed in each c...
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
For the circuit shown, use the node-voltage method to find v1, v2, and i1.
How much power is delivered to the c...
Electric Circuits. (11th Edition)
24. If we increase the temperature in a reactor by 90 degrees Fahrenheit [°F], how many degrees Celsius [°C] wi...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
2-1 List the five types of measurements that form the
basis of traditional ptane surveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
What is an algorithm?
Starting Out With Visual Basic (8th Edition)
Course Grades In a course, a teacher gives the following tests and assignments: A lab activity that is observe...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 1-m wide gate ab depicted on the right retains water 3 m deep. Determine the horizontal and vertical forces on the gate, and then calculate magnitude and direction of the resultant force on the gate. a r = 1 marrow_forwardexample 1.A 30-m long dam retains 9m of water as shown in the figure. Find the total resultant force acting on the dam and the location of the center of pressure.arrow_forwardThe Hoover Dam is 221 m tall and 379 m wide. Approximating it as a flat plate, determine the effective resultant force on the dam and where it acts. What is the gage pressure at the bottom of the dam? Assume water has a constant density of 1000 kg m-³.arrow_forward
- The A have 4.8 m wide sluice gate "ab" shown, tangent to vertical wall at "a", holds back Water. The surface of the gate in contact with the water can be taken as part of a cylinder with radius of B at 4.5m. The angle (theta) is C at 31°. Determine the following: a. Horizontal force acting on curve b. Location of horizontal force from the water surface. c. Total Force on the curve I W.S. Imarrow_forwardWater flows through the curved pipe shown in the figure below where point X denotes the center of gravity of the system. Considering the weight of the pipe and water with-in as Wg which acts at a distance of Xm from pipe axis, answer the following questions: 1) What are the horizontal and vertical components of the force provided by the flange at point A? 2) What is the moment provided by the flange at point A? Patm D2 H D1 A L Following data is given: Q = 1m³ /s D1 = 0.5 m D2 = 0.25 m X — 0.1 т L 1.5 m Н — 2 т WG = 1000 kgarrow_forwardThe right onearrow_forward
- Surface AB is a circular arc with a radius of 2 m and a width of 1 m into the paper. The distance EB is 4 m. The fluid above surface AB is water, and atmospheric pressure prevails on the free surface of the water and on the bottom side of surface AB. Find the magnitude and line of action of the hydrostatic force acting on surface AB.arrow_forwardA gate AB 4 ft long and 2 ft wide is held in position shown due to the spring whose constant is 96.0 Ibf/in. The spring is located compressed 1.5 ft in such a way as to keep the gate in equilibrium. Assume that on the gate (which moves through a circular sector BD as shown in Fig. figure), the force due to the spring is always horizontal. Determine the height d of the water.arrow_forwardThe semicircular plate as shown in the figure is 4 ft long and acts as a gate in channel. Determine the resultant force the water pressure exerts on the plate, and then find the components of reactions at the hings (pin) B and at the smooth A. Neglect the weight of the plate. Take Yw = 62.4 Ib/ft³ 3 ftarrow_forward
- Calculate the horizontal and vertical components of the hydrostatic thrust on the 90 cm radius cylindrical cover in the figure for the unit cover depth. Find the resultant force for the 3m cover depth.γwater= 9.810 kN/m3arrow_forward3. A semicircular 40-ft-diameter tunnel is to be built under a 150-ft-deep, 800- ft-long lake, as shown in the figure below. Determine the total hydrostatic force acting on the roof of the tunnel. Water 150 ft Tunnel 40 ftarrow_forwardThe flow of water from a reservoir is controlled by an L-shaped gate hinged at point A, as shown in the figure. The mass of the weight at B (a = 4 m to the right of A, b = 3 m above the base) is 5125 kg. If the gate opens when the water height is 1.75 m above the base, determine the width (in meters, not showing) of the gate.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY