Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 5P

V is a vector 24.8 units in magnitude and points at an angle of 23.4° above the negative axis, (a) Sketch this vector, (b) Calculate Vxand Vy. (c) Use Vxand Vy.andVy to obtain (again) the magnitude and direction of V [Note: Part (c) is a good way to check if you've resolved your vector correctly.]

Expert Solution & Answer
Check Mark
Solution

  1. Sketch of the vector |V|=24.8units and points at an angle of θ=23.4o above the negative x -axis
  2. Vx and Vy
  3. The magnitude |V| and direction θ using Vx and Vy .

Solution:

  1. The sketch of the vector is shown below:
  2.   Physics: Principles with Applications, Chapter 3, Problem 5P , additional homework tip  1

  3. The components Vx and Vy are -22.8 units and 9.85 units respectively.
  4. The magnitude |V| is 24.8 units and the direction θ=23.4o above the negative x-axis.

Explanation:

The magnitude of the vector |V|=24.8units and points at an angle of θ=23.4o above the negative x-axis

In this case, the direction θ is given above negative x-axis, this angle is counted from the negative-axis as follows:

  Physics: Principles with Applications, Chapter 3, Problem 5P , additional homework tip  2

Formula used:

The x-component Vx of vector V is defined as:

  Vx=|V|cosθ

The y-component of Vy vector V is defined as:

  Vy=|V|sinθ

Where:

  • |V| is the magnitude of the vector V
  • θ is the direction of the vector  V measured respect to the positive x -axis counter-clockwise.

The magnitude of vector can be obtained by:

  |V|=(Vx2)+( V y )2

And, the direction θ is defined as:

  θ=tan1(VyVx)

Calculation:

Substitute the values

  Vx=24.8cos( 180o 23.4o)Vx=22.8unitsVy=24.8sin( 180o 23.4o)Vy=9.85units

The magnitude of vector can be obtained by:

  |V|=( V x 2 )+ ( V y )2|V|= ( 22.8 )2+ ( 9.85 )2|V|=24.8

And, the direction θ is defined as:

  θ=tan1(VyVx)

  θ=tan1(9.8522.8)=23.4o

05:25

Chapter 3 Solutions

Physics: Principles with Applications

Ch. 3 - Prob. 11QCh. 3 - Prob. 12QCh. 3 - Prob. 13QCh. 3 - A projectile is launched at an upward angle of 300...Ch. 3 - Prob. 15QCh. 3 - Two cannonballs, A and B, are fired from the...Ch. 3 - 18. A person sitting in an enclosed train car,...Ch. 3 - Prob. 18QCh. 3 - Prob. 19QCh. 3 - Prob. 20QCh. 3 - A car is driven 225 km west and then 98 km...Ch. 3 - A delivery truck travels 21 blocks north, 16...Ch. 3 - If Vx=9.80 units and Vy=6.40 units, determine the...Ch. 3 - Graphically determine the resultant of the...Ch. 3 - V is a vector 24.8 units in magnitude and points...Ch. 3 - Vector V is 6.6 using long and points along the...Ch. 3 - Figure 3-33 shows two vectors, A and B , whose...Ch. 3 - Prob. 8PCh. 3 - Three vectors are shown in Fig. 3-35 Q. Their...Ch. 3 - (a) given the vectors A and B shown in Fig. 3-35,...Ch. 3 - Determine the vector AC , given the vectors A and...Ch. 3 - For the vectors shown in Fig. 3—35, determine (a)...Ch. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - 17. (l) A tiger leaps horizontally from a...Ch. 3 - 18. (l) A diver running 2.5 m/s dives out...Ch. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53GPCh. 3 - Prob. 54GPCh. 3 - Prob. 55GPCh. 3 - Prob. 56GPCh. 3 - Prob. 57GPCh. 3 - Prob. 58GPCh. 3 - Prob. 59GPCh. 3 - Prob. 60GPCh. 3 - Prob. 61GPCh. 3 - Prob. 62GPCh. 3 - Prob. 63GPCh. 3 - Prob. 64GPCh. 3 - Prob. 65GPCh. 3 - Prob. 66GPCh. 3 - Prob. 67GPCh. 3 - Prob. 68GPCh. 3 - Prob. 69GPCh. 3 - Prob. 70GPCh. 3 - Prob. 71GPCh. 3 - Prob. 72GPCh. 3 - Prob. 73GPCh. 3 - Prob. 74GPCh. 3 - Prob. 75GP

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
GCSE Physics - Vector Diagrams and Resultant Forces #43; Author: Cognito;https://www.youtube.com/watch?v=U8z8WFhOQ_Y;License: Standard YouTube License, CC-BY
TeachNext | CBSE Grade 10 | Maths | Heights and Distances; Author: Next Education India;https://www.youtube.com/watch?v=b_qm-1jHUO4;License: Standard Youtube License