Consider the system shown in Fig. P3-51. If a change of 0.9 kPa in the pressure of air causes the brine-mercury interface in the ratio to right column to drop by 5 mm in the brine level in the right column while the pressure in the bine pipe remains constant, determine.
The ratio of
Answer to Problem 51P
The ratio of
Explanation of Solution
Given information:
The change in pressure is
The following figure shows the arrangement of the liquids in the differential tube.
Figure-(1)
Write the expression for equating the pressure of the fluids in both the limbs initially.
Here, the initial pressure of air is
Pressure in the left side of the limb is equal to the pressure in the right limb.
Write the expression for equating the pressure of the fluid in both the limbs after the pressure drop of air.
Here, the final pressure of the air is
Substitute
Here, the change in differential mercury height is
Write the equation for the volume of brine as it remains constant.
Write the expression change of mercury level in the arrangement.
Substitute
Substitute
Here, the pressure difference is
Calculation:
Substitute
Conclusion:
The ratio of
Want to see more full solutions like this?
Chapter 3 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
- Access Pearson Mastering Engineering Back to my courses Course Home Course Home Scores Review Next >arrow_forwardAccess Pearson Course Home Scoresarrow_forwardAccess Pearson Mastering Engineering Back to my courses Course Home Course Home Scoresarrow_forwardCan you answer this question?arrow_forwardA gear has a gear wheel with 16 teeth. The gear should be dimensioned for the highest and lowest gear ratio. Looking for output power, torque, speed?nin= 2000 rpmmin = 30Nmn=0,9a max= 450 mmModule 4Gear limitsz1 z213 13-1614 14-2615 15-4516 16-10117 17-131418 18-…..I have calculate but I can’t get the right answers…..√16 =459x60/56x57=1.1 lowest59x60/13x13=20,94 highestnut=2000/1.1= 1818rpmnut=2000/20.94=95.5 rpmMut=1.1x30=33 NmMut=20.94x30=628,2 Nm(Right answer)LowestZ=13, M=24,4Nm, n=2462 rpmHighestZ=92, M=172,5Nm, n=347,8 rpmP=5655W on botharrow_forwardPlease see attached pic.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY