FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 40P
The hydraulic lift in a car repair shop has an output diameter of 45 cm and is to lift cars up to 2500 kg. Determine the fluid gage pressure that must be maintained in the reservoir.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q. After a puncture a driver is attempting to remove a wheel nut by applying a force
of P KN to one end of a wheel brace as shown in Fig. 1. In cross-section the brace
is a hollow steel tube (see section aa) of internal diameter r mm and external
diameter q mm.
wheel
nut
n
Position S
P
m
r
q
Section aa
Fig, 1
(a) Calculate (i) the twisting moment, (ii) the bending moment, and (iii) the shear
force in the brace at position S due to the applied load P.
(b) Calculate (i) the shear stress due to twisting, and (ii) the bending stress at
position S. Note that the shear force will not produce any shear stress at S.
(c) Calculate the maximum shearing stress in the brace at position S using the
Maximum Shear Stress Criterion.
2
Mechanics of Materials 2
Tutorials Portfolio: Exercise 5
(d) If the maximum permissible shear stress in the steel is 200 MPa, determine
the maximum torque that can be applied by the brace without the risk of
failure at S.
Calculate the first 5 Fourier series coefficients (A0-4 and B1-5 ) for the estimated R wave.
Refrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet. The outlet area is 1 m2, and the inlet area is 0.5 m2. Calculate the inlet and outlet velocities when the mass flow rate is 0.65 kg/s. Use the tables for R-134a.
The inlet velocity is m/s.
The outlet velocity is m/s.
Chapter 3 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 3 - What is the difference between gage pressure and...Ch. 3 - A tinysteel cube is suspended in water by a...Ch. 3 - Explain why some people experience nose bleeding...Ch. 3 - Consider two identical fans, one at sea level and...Ch. 3 - Someone claims that the absolute pressure in a...Ch. 3 - Express Pascal’s law, and give a real-world...Ch. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - A vacuum gage connected to a chamber reads 25 kPa...Ch. 3 - The pressure at the exit of an air compressor is...Ch. 3 - A diver's watch resists an absolute pressure of...
Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - The pressure in a water line is 1500 kPa. What is...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - A 180-Ibm man has a total foot imprint area of 68...Ch. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - The piston of a vertical piston-cylinder device...Ch. 3 - The vacuum pressure of a condenser is given to be...Ch. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - Determine the pressure exerted on a diver at 15 m...Ch. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - The hydraulic lift in a car repair shop has an...Ch. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - There is water at a height of 1 m in the rube open...Ch. 3 - Prob. 53PCh. 3 - A simple experiment has long been used to...Ch. 3 - A multifluid container is connected to a U-tube....Ch. 3 - A hydraulic lift is to be used to lift a 2500 kg...Ch. 3 - On a day in which the local atmospheric pressure...Ch. 3 - A U-tube manometer is used to measure the pressure...Ch. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A cylindrical tank is folly filled with water...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - The bowl shown in the figure (the white volume) is...Ch. 3 - A triangular-shaped gate is hinged at point A, as...Ch. 3 - Gate AB ( 0.60.9m ) is located at the bottom of a...Ch. 3 - Find the force applied by support BC to the gate...Ch. 3 - A concrete block is attached to the sate as shown....Ch. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Prob. 93CPCh. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 95CPCh. 3 - Consider two identical spherical bails submerged...Ch. 3 - Prob. 97PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - The density of a liquid is to be determined by an...Ch. 3 - Prob. 100PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - One of the common procedures in fitness programs...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - A water tank is being towed by a truck on a level...Ch. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 111PCh. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 120PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A 4-m-diameter vertical cylindrical milk tank...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Two vertical and connected cylindrical tanks of...Ch. 3 - The U-tube shown the figure subjected to an...Ch. 3 - Prob. 131EPCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Determine the pressure exerted on the surface of a...Ch. 3 - A vertical, frictionless piston-cylinder device...Ch. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - The average atmospheric pressure on earth is...Ch. 3 - Prob. 137PCh. 3 - Prob. 139PCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - Prob. 142PCh. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 144PCh. 3 - An oil pipeline and a 1.3-m3 rigid air tank are...Ch. 3 - A 20-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 148PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 151PCh. 3 - Prob. 152EPCh. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 156PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - The density of a floating body can be determined...Ch. 3 - A raft is made using a number of logs with 25 cm...Ch. 3 - A prismatic timber is at equilibrium in a liquid,...Ch. 3 - The cylindrical lank containing water accelerates...Ch. 3 - A 30-cm-diameter. 100-cm-hish vertical cylindrical...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 168PCh. 3 - Determine the vertical force applied by water on...Ch. 3 - Prob. 170PCh. 3 - In order to keep the cone-shaped plus closed as...Ch. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - The atmospheric pressure in a location is measured...Ch. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 186PCh. 3 - Prob. 187PCh. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - Compare fee vortex with forced vortex according to...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is an uninitialized variable?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
Using your text editor, enter (that is, type in) the C++ program shown in Display 1.8. Be certain to type the f...
Problem Solving with C++ (10th Edition)
Why is the study of database technology important?
Database Concepts (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A container filled with 70 kg of liquid water at 95°C is placed in a 90-m3 room that is initially at 12°C. Thermal equilibrium is established after a while as a result of heat transfer between the water and the air in the room. Assume the room is at the sea level, well sealed, and heavily insulated. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final equilibrium temperature. Use the table containing the ideal gas specific heats of various common gases. The final equilibrium temperature is °C.arrow_forwardSteam at 100 psia and 650°F is expanded adiabatically in a closed system to 10 psia. Determine the work produced, in Btu/lbm, and the final temperature of steam for an isentropic expansion efficiency of 80 percent. Use steam tables. The work produced is Btu/lbm. The final temperature of steam is °F.arrow_forwardComplet the solution : Vavg Ti Te Ts Q hexp Nuexp htheo Re Nutheo Error (m/s) (*C) (*C) (*C) (W) 2.11 18.8 21.3 45.8 2.61 18.5 20.8 46.3arrow_forward
- A 48-kg iron block and a 76-kg copper block, both initially at 80°C, are dropped into a large lake at 15°C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and the lake water. Determine the total entropy change for this process. The specific heat of iron at room temperature is cp = 0.45 kJ/kg·K. The specific heat of copper at 27°C is cp = 0.386 kJ/kg·K. The total entropy change for this process is kJ/K.arrow_forwardPlease help Air at 4.4 MPa and 500°C is expanded in an adiabatic gas turbine to 0.2 MPa. Calculate the maximum work that this turbine can produce in kJ/kg. Use the table containing the ideal gas specific heats of various common gases. The maximum work that this turbine can produce is kJ/kg.arrow_forwardSaturated water vapor at 150°C is compressed in a reversible steady-flow device to 1150 kPa while its specific volume remains constant. Determine the work required in kJ/kg. Use steam tables. The work required is kJ/kg.arrow_forward
- Three lbm of R-134a is expanded isentropically in a closed system from 100 psia and 100°F to 10 psia. Determine the total heat transfer and the work production for this process. Use the tables for R-134a. The total heat transfer is Btu. The work production for this process is Btu. Three lbm of R-134a is expanded isentropically in a closed system from 100 psia and 100°F to 10 psia. Determine the total heat transfer and the work production for this process. Use the tables for R-134a. The total heat transfer is Btu. The work production for this process is Btu.arrow_forwardOxygen at 300 kPa and 90°C flowing at an average velocity of 3 m/s is expanded in an adiabatic nozzle. What is the maximum velocity of the oxygen at the outlet of this nozzle when the outlet pressure is 60 kPa? Use the table containing the ideal gas specific heats of various common gases. The maximum velocity of the oxygen at the outlet of this nozzle is m/s.arrow_forwardThe well-insulated container shown in the given figure is initially evacuated. The supply line contains air that is maintained at 150 psia and 110°F. The valve is opened until the pressure in the container is the same as the pressure in the supply line. Determine the minimum temperature in the container when the valve is closed. Use the table containing the ideal gas specific heats of various common gases. A valve is shown at the vertical tube. The minimum temperature in the container when the valve is closed is °F.arrow_forward
- During the isothermal heat addition process of a Carnot cycle, 1050 kJ of heat is added to the working fluid from a source at 400°C. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the total entropy change for the process. The total entropy change for the process is kJ/K.arrow_forwardQuestion 6 What kind of problem would arise if components of the strain tensor were defined as v Double counting of the normal strains. Strain discontinuity. Rotation would lead to a shear strain. Double counting of the shear strains.arrow_forwardplease show steps, thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY