Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.7NP
Integrate the expression
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume N₂ behaves as perfect gas. It expands reversibly and adiabatically from Vi to Vf with the pressure change from pi to pf.
(a) Derive the temperature versus volume relationship and the pressure and volume relationship for this expansion.
(b) When a sample of N₂ of mass 3.12 g at 23.0 °C is allowed to expand reversibly and adiabatically from 4.00 × 10² cm3 to 2.00 dm3, what is the work done by the gas?
A sample of argon of mass 6.56 g occupies 18.5 dm3 at 305 K.(i) Calculate the work done when the gas expands isothermally against a constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm3. (ii) Calculate the work that would be done if the same expansion occurred reversibly.
A sample of 2.2 mol CO2(g) is originally confined in 15 dm3 at 280 K and then undergoes adiabatic expansion against a constant pressure of 78.5 kPa until the volume has increased by a factor of 4.0. Calculate ΔT. (The final pressure of the gas is not necessarily 78.5 kPa.)
Chapter 3 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
Ch. 3 - Prob. 3.1CPCh. 3 - Prob. 3.2CPCh. 3 - Prob. 3.3CPCh. 3 - Prob. 3.4CPCh. 3 - Why can qv be equated with a state function if q...Ch. 3 - Prob. 3.6CPCh. 3 - Prob. 3.7CPCh. 3 - Prob. 3.8CPCh. 3 - Prob. 3.9CPCh. 3 - Why is qv=U only for a constant volume process? Is...
Ch. 3 - Prob. 3.11CPCh. 3 - Why are q and w not state functions?Ch. 3 - Prob. 3.13CPCh. 3 - What is the relationship between a state function...Ch. 3 - Prob. 3.15CPCh. 3 - Is the following statement always, never, or...Ch. 3 - Is the following statement always, never, or...Ch. 3 - Prob. 3.18CPCh. 3 - Prob. 3.19CPCh. 3 - Is the expression UV=T2T1CVdT=nT1T2CV,mdT only...Ch. 3 - Prob. 3.1NPCh. 3 - Prob. 3.2NPCh. 3 - Prob. 3.3NPCh. 3 - Prob. 3.4NPCh. 3 - Prob. 3.5NPCh. 3 - Prob. 3.6NPCh. 3 - Integrate the expression =1/VV/TP assuming that ...Ch. 3 - Prob. 3.8NPCh. 3 - Prob. 3.9NPCh. 3 - Prob. 3.10NPCh. 3 - Prob. 3.11NPCh. 3 - Calculate w, q, H, and U for the process in which...Ch. 3 - Prob. 3.13NPCh. 3 - Prob. 3.14NPCh. 3 - Prob. 3.15NPCh. 3 - Prob. 3.16NPCh. 3 - Prob. 3.17NPCh. 3 - Prob. 3.18NPCh. 3 - Prob. 3.19NPCh. 3 - Prob. 3.20NPCh. 3 - Prob. 3.21NPCh. 3 - Prob. 3.22NPCh. 3 - Derive the following relation, UVmT=3a2TVmVm+b for...Ch. 3 - Prob. 3.24NPCh. 3 - Prob. 3.25NPCh. 3 - Prob. 3.26NPCh. 3 - Prob. 3.27NPCh. 3 - Prob. 3.28NPCh. 3 - Prob. 3.29NPCh. 3 - Prob. 3.30NPCh. 3 - Prob. 3.31NPCh. 3 - Prob. 3.32NPCh. 3 - Prob. 3.33NPCh. 3 - Prob. 3.34NPCh. 3 - Derive the equation H/TV=CV+V/k from basic...Ch. 3 - Prob. 3.36NPCh. 3 - Prob. 3.37NPCh. 3 - Show that CVVT=T2PT2VCh. 3 - Prob. 3.39NP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forwardCalculate V−1(∂V/∂T)p,n for an ideal gas?arrow_forwardCalculate the molar entropy of Ar under conditions of T=298K and V=24.5L. Use the ideal gas law to calculate the pressure of Ar.arrow_forward
- 7:53 PM Mon Nov 21 < TOA 5.) A sample of 2.00 mol of a perfect gas is initially at a pressure of 111 kPa and temperature of 277 K. The sample is heated reversibly to 356 K at a constant volume. The constant volume molar heat capacity is 2.5R. Calculate the final pressure, AU, q, and w. n= 2.00 mol AT= 356 K-277 K= 79 K P= 111 kPa 1.11x 10³ Pa Cp.m= 2.5R = 2.5.8.314 / mcl.k= 20.79 J/mol K F w=0 AU= q Reversible pressure inside is same as pressure outside = m CSAT @87% q= 4 8arrow_forwardCalculate AS (for the system) when the state of 2.00 mol diatomic perfect gas molecules, for which Cp,m = (7/2)R, is changed from 25 C and 1.50 atm to 135 C and 7.00 atm.arrow_forwardHow much work is done in blowing up a balloon from zero volume to a volume of 6.7 L, assuming that p = 1.00 bar and no work is required to stretch the rubber? (In reality, the work that goes into stretching the rubber is substantial.)arrow_forward
- A sample of 4.50 g of methane occupies 12.7 dm³ at 310 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increased by 3.3 dm³. (b) Calculate the work that would be done if the same expansion occurred reversibly.arrow_forwardA sample of Ar of mass 8.30 g occupies 1.75dm3 at 330 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 1 bar until itsvolume has increased by 0.35 dm3 (b) Calculate the work that would be done if thesame expansion occurred reversiblyarrow_forwardCalculate the work of expansion accompanying the complete combustion of 10.0 g of sucrose (C12H22O11) to carbon dioxide and (a) liquid water, (b) water vapour at 20 °c when the external pressure is 1.20 atm.arrow_forward
- The molar entropy of a sample of neon at 298 K is 146.22 J K−1 mol−1. The sample is heated at constant volume to 500 K; assuming that the molar constant-volume heat capacity of neon is 3/2 R, calculate the molar entropy of the sample at 500 K.arrow_forwardOne mole of N2(g) occupies 5 L of volume at 300 K in a sealed cylinder. The gas behaves ideally in expanding isothermally to 10 L. Calculate w, ΔE and ΔH if the expansion proceeds (i) reversibly, (ii) irreversibly against an external pressure at 0.2 atm.arrow_forwardUse the equipartition principle to estimate the value of γ = Cp/CV for carbon dioxide. Do this calculation with and without the vibrational contribution to the energy. Which is closer to the experimental value at 25 °C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY