(a)
Interpretation:
The element has to be identified from the total number of electrons present that has electronic configuration as
Concept Introduction:
Electronic configuration of an atom describes how many electrons are present in the shell. Many orbitals are present about the nucleus of an atom. In these orbitals the electrons do not occupy randomly. There are three rules for assigning the electrons to various shells, subshells, and orbitals. They are,
- The subshells are filled in increasing order of energy.
- In a subshell, the electrons occupy the orbital singly first in all orbitals before pairing up by the second electron. All the electrons that are in singly occupied orbitals have same spin.
- In a given orbital there cannot be more than two electrons and they have opposite spins.
Electronic configuration of an element is the one that gives information about how many electrons are present in each electron subshell of an atom. The electrons are added to the subshells in increasing order of energy. Electronic configurations are written in shorthand notation which uses a number‑letter combination. The shell is indicated by the number and subshell is indicated by the letter. Superscript that follows the subshell tells how many electrons are present in the subshell.
The order of filling up the electrons in the subshell is done as shown in the given figure below.
(b)
Interpretation:
The element has to be identified from the total number of electrons present that has electronic configuration as
Concept Introduction:
Electronic configuration of an atom describes how many electrons are present in the shell. Many orbitals are present about the nucleus of an atom. In these orbitals the electrons do not occupy randomly. There are three rules for assigning the electrons to various shells, subshells, and orbitals. They are,
- The subshells are filled in increasing order of energy.
- In a subshell, the electrons occupy the orbital singly first in all orbitals before pairing up by the second electron. All the electrons that are in singly occupied orbitals have same spin.
- In a given orbital there cannot be more than two electrons and they have opposite spins.
Electronic configuration of an element is the one that gives information about how many electrons are present in each electron subshell of an atom. The electrons are added to the subshells in increasing order of energy. Electronic configurations are written in shorthand notation which uses a number‑letter combination. The shell is indicated by the number and subshell is indicated by the letter. Superscript that follows the subshell tells how many electrons are present in the subshell.
The order of filling up the electrons in the subshell is done as shown in the given figure below.
(c)
Interpretation:
The element has to be identified from the total number of electrons present that has electronic configuration as
Concept Introduction:
Electronic configuration of an atom describes how many electrons are present in the shell. Many orbitals are present about the nucleus of an atom. In these orbitals the electrons do not occupy randomly. There are three rules for assigning the electrons to various shells, subshells, and orbitals. They are,
- The subshells are filled in increasing order of energy.
- In a subshell, the electrons occupy the orbital singly first in all orbitals before pairing up by the second electron. All the electrons that are in singly occupied orbitals have same spin.
- In a given orbital there cannot be more than two electrons and they have opposite spins.
Electronic configuration of an element is the one that gives information about how many electrons are present in each electron subshell of an atom. The electrons are added to the subshells in increasing order of energy. Electronic configurations are written in shorthand notation which uses a number‑letter combination. The shell is indicated by the number and subshell is indicated by the letter. Superscript that follows the subshell tells how many electrons are present in the subshell.
The order of filling up the electrons in the subshell is done as shown in the given figure below.
(d)
Interpretation:
The element has to be identified from the total number of electrons present that has electronic configuration as
Concept Introduction:
Electronic configuration of an atom describes how many electrons are present in the shell. Many orbitals are present about the nucleus of an atom. In these orbitals the electrons do not occupy randomly. There are three rules for assigning the electrons to various shells, subshells, and orbitals. They are,
- The subshells are filled in increasing order of energy.
- In a subshell, the electrons occupy the orbital singly first in all orbitals before pairing up by the second electron. All the electrons that are in singly occupied orbitals have same spin.
- In a given orbital there cannot be more than two electrons and they have opposite spins.
Electronic configuration of an element is the one that gives information about how many electrons are present in each electron subshell of an atom. The electrons are added to the subshells in increasing order of energy. Electronic configurations are written in shorthand notation which uses a number‑letter combination. The shell is indicated by the number and subshell is indicated by the letter. Superscript that follows the subshell tells how many electrons are present in the subshell.
The order of filling up the electrons in the subshell is done as shown in the given figure below.
Trending nowThis is a popular solution!
Chapter 3 Solutions
General, Organic, and Biological Chemistry Seventh Edition
- Give electron configurations according to the Bohr model for each of the following elements. Indicate which of these elements you expect to be the most reactive and the least reactive. a. He b. Al c. Be d. Ne e. Oarrow_forwardThe “Chemistry in Focus" segment The Chemistry of Bohrium discusses element 107. bohrium (Bh). What is the expected electron configuration of Bh?arrow_forwardWhich statement is true of the quantum mechanical model, but not of the Bohr model? a. Electrons orbit the nucleus in simple circular orbits, just like planets orbit the Sun. b. The exact path that an electron follows within an atom cannot be specified. c. The electron is attracted to the nucleus of the atom.arrow_forward
- How are the Bohr model and the Rutherford model of the atom similar? How are they different?arrow_forwardThe contributions of J. J. Thomson and Ernest Rutherford led the way to todays understanding of the structure of the atom. What were their contributions?arrow_forwardDetermine whether each statement that follows is true or false: a Electron energies are quantized in excited states but not in the ground state. b Line spectra of the elements are experimental evidence of the quantization of electron energies. c Energy is released as an electron passes from ground state to an excited state. d The energy of an electron may be between two quantized energy levels. e The Bohr model explanation of line spectra is still thought to be correct. f The quantum mechanical model of the atom describes orbitals in which electrons travel around the nucleus. g Orbitals are regions in which there is a high probability of finding an electron. h All energy sublevels have the same number of orbitals. i The 3p orbitals of an atom are larger than its 2p orbitals but smaller than its 4p orbitals. j At a given sublevel, the maximum number of d electrons is 5. k The halogens are found in Group 7A/17 of the periodic table. l The dot structure of the alkaline earths is X, where X is the symbol of element in the family. m Stable ions formed by alkaline earth metals are isoelectronic with noble gas atoms. n Atomic numbers 23 and 45 both belong to transition elements. o Atomic number 52, 35, and 18 are arranged in order of increasing atomic size. p Atomic number 7, 16, and 35 are all nonmetals.arrow_forward
- Which orbital is the first be filled in any atom? Why?arrow_forwardThe contributions of J. J. Thomson and Ernest Rutherford led the way to todays understanding of the structure of the atom. What were their contributions?arrow_forwardWhich of the following statements is(are) true? a. The 2s orbital in the hydrogen atom is larger than the 3s orbital also in the hydrogen atom. b. The Bohr model of the hydrogen atom has been found to be incorrect. c. The hydrogen atom has quantized energy levels. d. An orbital is the same as a Bohr orbit. e. The third energy level has three sublevels, the s, p, and d sublevels.arrow_forward
- Which atom has the electron configuration 1s22s22p63s23p63d74s2?arrow_forwardGive electron configurations according to the Bohr model for each of the following elements. Try to not use Figure 3.11, but instead determine the configuration based on your knowledge of the number of electrons in each atom and the maximum number of electrons in each Bohr orbit. Indicate which of these elements you expect to be the most reactive and the least reactive. a. B b. Si c. Ca d. F e. Ararrow_forwardWhat additional information do we need to answer the question Which ion has the electron configuration 1s22s22p63s23p6 ?arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning