(a)
Interpretation:
The total number of electrons that can be accommodated in orbital of
Concept Introduction:
Electrons are present outside the nucleus of an atom. These electrons are restricted to some specific regions around the nucleus of an atom. Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.
Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus. Electron shells are numbered as 1, 2, 3, and so on. The energy of electron increases as the distance between the nucleus and electron shell increases. Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.
Electron subshell is the space region in the electron shell which contains the electrons that have same energy. The number of electron subshell present for each electron shell depends upon the shell number. Electrons are added to the electron subshell in the electron shell. The number of electron subshell that is present in an electron shell depends only on the shell number. If the shell number is 1, then there is only one electron subshell. If the shell number is 2 means then there is two electron subshells and so on.
Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found. An electron orbital can hold only two electrons irrespective of the other considerations. “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.
Each and every orbitals have distinct shape. This does not depend upon the shell number. “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.
Electrons that are present within an orbital “move about” in an orbital. Electron spins on its own either in clockwise or anticlockwise direction. In an orbital, the two electrons that are present will have opposite spin. If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital. For two electrons present in the same orbital, this is the most favorable state energetically.
(b)
Interpretation:
The total number of electrons that can be accommodated in orbital of
Concept Introduction:
Electrons are present outside the nucleus of an atom. These electrons are restricted to some specific regions around the nucleus of an atom. Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.
Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus. Electron shells are numbered as 1, 2, 3, and so on. The energy of electron increases as the distance between the nucleus and electron shell increases. Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.
Electron subshell is the space region in the electron shell which contains the electrons that have same energy. The number of electron subshell present for each electron shell depends upon the shell number. Electrons are added to the electron subshell in the electron shell. The number of electron subshell that is present in an electron shell depends only on the shell number. If the shell number is 1, then there is only one electron subshell. If the shell number is 2 means then there is two electron subshells and so on.
Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found. An electron orbital can hold only two electrons irrespective of the other considerations. “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.
Each and every orbitals have distinct shape. This does not depend upon the shell number. “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.
Electrons that are present within an orbital “move about” in an orbital. Electron spins on its own either in clockwise or anticlockwise direction. In an orbital, the two electrons that are present will have opposite spin. If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital. For two electrons present in the same orbital, this is the most favorable state energetically.
(c)
Interpretation:
The total number of electrons that can be accommodated in orbital of
Concept Introduction:
Electrons are present outside the nucleus of an atom. These electrons are restricted to some specific regions around the nucleus of an atom. Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.
Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus. Electron shells are numbered as 1, 2, 3, and so on. The energy of electron increases as the distance between the nucleus and electron shell increases. Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.
Electron subshell is the space region in the electron shell which contains the electrons that have same energy. The number of electron subshell present for each electron shell depends upon the shell number. Electrons are added to the electron subshell in the electron shell. The number of electron subshell that is present in an electron shell depends only on the shell number. If the shell number is 1, then there is only one electron subshell. If the shell number is 2 means then there is two electron subshells and so on.
Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found. An electron orbital can hold only two electrons irrespective of the other considerations. “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.
Each and every orbitals have distinct shape. This does not depend upon the shell number. “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.
Electrons that are present within an orbital “move about” in an orbital. Electron spins on its own either in clockwise or anticlockwise direction. In an orbital, the two electrons that are present will have opposite spin. If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital. For two electrons present in the same orbital, this is the most favorable state energetically.
(d)
Interpretation:
The total number of electrons that can be accommodated in orbital of
Concept Introduction:
Electrons are present outside the nucleus of an atom. These electrons are restricted to some specific regions around the nucleus of an atom. Electrons do move rapidly in the space about the nucleus is divided into subspaces that are known as shells, subshells and orbitals.
Electron shells are the space region that is present around the nucleus and this contains electrons that possess approximately same energy and which spend most of their time in the same distance from nucleus. Electron shells are numbered as 1, 2, 3, and so on. The energy of electron increases as the distance between the nucleus and electron shell increases. Electron shell can accommodate electrons and it varies because higher the electron shell number, more is the number of electrons that can be present in it.
Electron subshell is the space region in the electron shell which contains the electrons that have same energy. The number of electron subshell present for each electron shell depends upon the shell number. Electrons are added to the electron subshell in the electron shell. The number of electron subshell that is present in an electron shell depends only on the shell number. If the shell number is 1, then there is only one electron subshell. If the shell number is 2 means then there is two electron subshells and so on.
Electron orbital is the space region in electron subshell where the electrons with specific energy are most likely to be found. An electron orbital can hold only two electrons irrespective of the other considerations. “s” subshell has one orbital, “p” subshell has three orbital, “d” subshell has five orbital and “f” subshell has seven orbitals.
Each and every orbitals have distinct shape. This does not depend upon the shell number. “s” orbital is spherical shape, “p” orbital has two lobes, “d” orbitals have four lobes, and “f” orbital has eight lobes.
Electrons that are present within an orbital “move about” in an orbital. Electron spins on its own either in clockwise or anticlockwise direction. In an orbital, the two electrons that are present will have opposite spin. If one electron spins in clockwise direction, the other electron will spin in anticlockwise direction in an orbital. For two electrons present in the same orbital, this is the most favorable state energetically.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
General, Organic, and Biological Chemistry Seventh Edition
- Show work. don't give Ai generated solutionarrow_forwardIn intercalation compounds, their sheets can be neutral or have a negative or positive charge, depending on the nature of the incorporated species and its structure. Is this statement correct?arrow_forwardThis thermodynamic cycle describes the formation of an ionic compound MX2 from a metal element M and nonmetal element X in their standard states. What is the lattice enthalpy of MX2 ? What is the enthalpy formation of MX2 ? Suppose both the heat of sublimation of M and the ionization enthalpy of M were smaller. Would MX2 be more stable? Or less? or impossible to tell without more information?arrow_forward
- I need to make 25mL of solution with the stocks shown below. How would I calculate the math?arrow_forwardWe are practicing calculating for making solutions. How would I calculate this?arrow_forwardBr. , H+ .OH Mg ether solvent H+, H₂O 17. Which one of the compounds below is the final product of the reaction sequence shown above? HO A HO HO OH D B OH HO OH C OH HO OH Earrow_forward
- 8:57 PM Sun Jan 26 Content ← Explanation Page X Content X ALEKS Jade Nicol - Le A https://www-av C www-awa.aleks.com O States of Matter Understanding consequences of important physical properties of liquids ? QUESTION Liquid A is known to have a lower viscosity and lower surface tension than Liquid B. Use these facts to predict the result of each experiment in the table below, if you can. experiment Liquid A and Liquid B are each pumped through tubes with an inside diameter of 27.0 mm, and the pressures PA and PB needed to produce a steady flow of 2.4 mL/s are measured. 25.0 mL of Liquid A are poured into a beaker, and 25.0 mL of Liquid B are poured into an identical beaker. Stirrers in each beaker are connected to motors, and the forces FA and FB needed to stir each liquid at a constant rate are measured. predicted outcome OPA will be greater than PB OPA will be less than PB OPA will be equal to PB It's impossible to predict whether PA or PB will be greater without more information.…arrow_forwardShow work. Don't give Ai generated solutionarrow_forward5. Please draw in the blanks the missing transition states and the correlated products. Explicitly display relevant absolute stereochemical configuration. MeOH I OMe H Endo transition state, dienophile approaching from the bottom of diene + H ཎྞཾ ཌཱརཱ༔,_o OMe H H OMe Endo transition state, dienophile approaching from the top of diene or from the bottom but horizontally flipped (draw one) + Exo transition state, dienophile approaching from the top of diene or from the bottom but horizontally flipped (draw one) Exo transition state, dienophile approaching from the top of diene or from the bottom but horizontally flipped (draw one) MeO H H MeO H MeO H MeO H Harrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning