Computer Systems: A Programmer's Perspective (3rd Edition)
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.67HW

For this exercise, we will examine the code generated by GCC for functions that have structures as arguments and return values, and from this see how these language features are typically implemented.

The following C code has a function process having structures as argument and return values, and a function values, and a function eval that tails process.

Chapter 3, Problem 3.67HW, For this exercise, we will examine the code generated by GCC for functions that have structures as , example  1

Gcc generates the following code for these two functions:

Chapter 3, Problem 3.67HW, For this exercise, we will examine the code generated by GCC for functions that have structures as , example  2

Chapter 3, Problem 3.67HW, For this exercise, we will examine the code generated by GCC for functions that have structures as , example  3

A. We can see on line 2 of function eval that it allocates 104 bytes on the stack. Diagram the stack frame for oval, showing the:Nal= that it stores on the stack prior to calling process. B. What value does eval pass in its call to process?

C. How does the code for process access the elements of structure arguments?

D. How does the code for pro cess set the fields of result structure r?

E. Complete your diagram of the stack frame for eval, showing how eval accesses the elements of structure r following the return from process.

F. What general principles can you discern about how structure values are passed as function arguments and how they are returned as function results?

Blurred answer
06:44
Students have asked these similar questions
Modular Program Structure. Analysis of Structured Programming Examples. Ways to Reduce Coupling. Based on the given problem, create an algorithm and a block diagram, and write the program code: Function: y=xsin⁡x Interval: [0,π] Requirements: Create a graph of the function. Show the coordinates (x and y). Choose your own scale and show it in the block diagram. Create a block diagram based on the algorithm. Write the program code in Python. Requirements: Each step in the block diagram must be clearly shown. The graph of the function must be drawn and saved (in PNG format). Write the code in a modular way (functions and the main part should be separate). Please explain and describe the results in detail.
Based on the given problem, create an algorithm and a block diagram, and write the program code: Function: y=xsin⁡x Interval: [0,π] Requirements: Create a graph of the function. Show the coordinates (x and y). Choose your own scale and show it in the block diagram. Create a block diagram based on the algorithm. Write the program code in Python. Requirements: Each step in the block diagram must be clearly shown. The graph of the function must be drawn and saved (in PNG format). Write the code in a modular way (functions and the main part should be separate). Please explain and describe the results in detail.
Based on the given problem, create an algorithm and a block diagram, and write the program code: Function: y=xsin⁡x Interval: [0,π] Requirements: Create a graph of the function. Show the coordinates (x and y). Choose your own scale and show it in the block diagram. Create a block diagram based on the algorithm. Write the program code in Python. Requirements: Each step in the block diagram must be clearly shown. The graph of the function must be drawn and saved (in PNG format). Write the code in a modular way (functions and the main part should be separate). Please explain and describe the results in detail.

Chapter 3 Solutions

Computer Systems: A Programmer's Perspective (3rd Edition)

Ch. 3.5 - Prob. 3.11PPCh. 3.5 - Prob. 3.12PPCh. 3.6 - Prob. 3.13PPCh. 3.6 - Prob. 3.14PPCh. 3.6 - Prob. 3.15PPCh. 3.6 - Prob. 3.16PPCh. 3.6 - Practice Problem 3.17 (solution page 331) An...Ch. 3.6 - Practice Problem 3.18 (solution page 332) Starting...Ch. 3.6 - Prob. 3.19PPCh. 3.6 - Prob. 3.20PPCh. 3.6 - Prob. 3.21PPCh. 3.6 - Prob. 3.22PPCh. 3.6 - Prob. 3.23PPCh. 3.6 - Practice Problem 3.24 (solution page 335) For C...Ch. 3.6 - Prob. 3.25PPCh. 3.6 - Prob. 3.26PPCh. 3.6 - Practice Problem 3.27 (solution page 336) Write...Ch. 3.6 - Prob. 3.28PPCh. 3.6 - Prob. 3.29PPCh. 3.6 - Practice Problem 3.30 (solution page 338) In the C...Ch. 3.6 - Prob. 3.31PPCh. 3.7 - Prob. 3.32PPCh. 3.7 - Prob. 3.33PPCh. 3.7 - Prob. 3.34PPCh. 3.7 - Prob. 3.35PPCh. 3.8 - Prob. 3.36PPCh. 3.8 - Prob. 3.37PPCh. 3.8 - Prob. 3.38PPCh. 3.8 - Prob. 3.39PPCh. 3.8 - Prob. 3.40PPCh. 3.9 - Prob. 3.41PPCh. 3.9 - Prob. 3.42PPCh. 3.9 - Practice Problem 3.43 (solution page 344) Suppose...Ch. 3.9 - Prob. 3.44PPCh. 3.9 - Prob. 3.45PPCh. 3.10 - Prob. 3.46PPCh. 3.10 - Prob. 3.47PPCh. 3.10 - Prob. 3.48PPCh. 3.10 - Prob. 3.49PPCh. 3.11 - Practice Problem 3.50 (solution page 347) For the...Ch. 3.11 - Prob. 3.51PPCh. 3.11 - Prob. 3.52PPCh. 3.11 - Practice Problem 3.52 (solution page 348) For the...Ch. 3.11 - Practice Problem 3.54 (solution page 349) Function...Ch. 3.11 - Prob. 3.55PPCh. 3.11 - Prob. 3.56PPCh. 3.11 - Practice Problem 3.57 (solution page 350) Function...Ch. 3 - For a function with prototype long decoda2(long x,...Ch. 3 - The following code computes the 128-bit product of...Ch. 3 - Prob. 3.60HWCh. 3 - In Section 3.6.6, we examined the following code...Ch. 3 - The code that follows shows an example of...Ch. 3 - This problem will give you a chance to reverb...Ch. 3 - Consider the following source code, where R, S,...Ch. 3 - The following code transposes the elements of an M...Ch. 3 - Prob. 3.66HWCh. 3 - For this exercise, we will examine the code...Ch. 3 - Prob. 3.68HWCh. 3 - Prob. 3.69HWCh. 3 - Consider the following union declaration: This...Ch. 3 - Prob. 3.71HWCh. 3 - Prob. 3.72HWCh. 3 - Prob. 3.73HWCh. 3 - Prob. 3.74HWCh. 3 - Prob. 3.75HW

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning
What is Abstract Data Types(ADT) in Data Structures ? | with Example; Author: Simple Snippets;https://www.youtube.com/watch?v=n0e27Cpc88E;License: Standard YouTube License, CC-BY