University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.57P
A grasshopper leaps into the air from the edge of a vertical cliff, as shown in Fig. P3.57. Find (a) the initial speed of the grasshopper and (b) the height of the cliff.
Figure P3.57
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule06:46
Students have asked these similar questions
: A farm truck travels
due east with a constant
speed of 9.50 m/s along
a horizontal road. A boy
riding in the back of the
truck tosses a can of soda
upward (Fig. P3.40) and
Figure P3.40
catches it at the same loca-
tion in the truck bed, but
16.0 m farther down the road. Ignore any effects of air resis-
tance. (a) At what angle to the vertical does the boy throw the
can, relative to the moving truck? (b) What is the can's ini-
tial speed relative to the truck? (c) What is the shape of the
can's trajectory as seen by the boy? (d) What is the shape of
the can's trajectory as seen by a stationary observer on the
ground? (e) What is the initial velocity of the can, relative to
the stationary observer?
A landscape architect is
planning an artificial waterfall
in a city park. Water flowing at
0.750 m/s leaves the end of a
horizontal channel at the top
of a vertical wall h = 2.35 m
high and falls into a pool (Fig.
P3.54). (a) How far from the
wall will the water land? Will
the space behind the waterfall
be wide enough for a pedes-
trian walkway? (b) To sell her
plan to the city council, the architect wants to build a model
Figure P3.54
to standard scale, one-twelfth actual size. How fast should the
water flow in the channel in the model?
A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 18.0 m/s. The cliff is 50.0 m above a flat, horizontal beach, as shown in Figure P3.24. How long after being released does the stone strike the beach below the cliff? With what speed and angle of impact does the stone land?
Chapter 3 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 3.1 - In which of these situations would the average...Ch. 3.2 - A sled travels over the crest of a snow-covered...Ch. 3.3 - In Example 3.10, suppose the tranquilizer dart has...Ch. 3.4 - Suppose that the particle in Fig. 3.30 experiences...Ch. 3.5 - Suppose the nose of an airplane is pointed due...Ch. 3 - A simple pendulum (a mass swinging at the end of a...Ch. 3 - Redraw Fig. 3.11a if a is antiparallel to v1. Does...Ch. 3 - A projectile moves in a parabolic path without air...Ch. 3 - A book slides off a horizontal tabletop. As it...Ch. 3 - At the instant that you fire a bullet horizontally...
Ch. 3 - A package falls out of an airplane that is flying...Ch. 3 - Sketch the six graphs of the x- and y-components...Ch. 3 - If a jumping frog can give itself the same initial...Ch. 3 - A projectile is fired upward at an angle above...Ch. 3 - In uniform circular motion, what are the average...Ch. 3 - In uniform circular motion, how does the...Ch. 3 - In uniform circular motion, the acceleration is...Ch. 3 - Raindrops hitting the side windows of a car in...Ch. 3 - In a rainstorm with a strong wind, what determines...Ch. 3 - You are on the west bank of a river that is...Ch. 3 - A stone is thrown into the air at an angle above...Ch. 3 - A squirrel has x- and y-coordinates (1.1 m, 3.4 m)...Ch. 3 - A rhinoceros is at the origin of coordinates at...Ch. 3 - CALC A web page designer creates an animation in...Ch. 3 - CALC The position of a squirrel running in a park...Ch. 3 - A jet plane is flying at a constant altitude. At...Ch. 3 - A dog running in an open field has components of...Ch. 3 - CALC The coordinates of a bird flying in the...Ch. 3 - CALC A remote-controlled car is moving in a vacant...Ch. 3 - A physics book slides off a horizontal tabletop...Ch. 3 - A daring 510-N swimmer dives off a cliff with a...Ch. 3 - Crickets Chirpy and Milada jump from the top of a...Ch. 3 - A rookie quarterback throws a football with an...Ch. 3 - Leaping the River I. During a storm, a car...Ch. 3 - BIO The Champion Jumper of the Insect World. The...Ch. 3 - Inside a starship at rest on the earth, a ball...Ch. 3 - On level ground a shell is fired with an initial...Ch. 3 - A major leaguer hits a baseball so that it leaves...Ch. 3 - A shot putter releases the shot some distance...Ch. 3 - Win the Prize. In a carnival booth, you can win a...Ch. 3 - Firemen use a high-pressure hose to shoot a stream...Ch. 3 - A man stands on the roof of a 15.0-m-tall building...Ch. 3 - A 124-kg balloon carrying a 22-kg basket is...Ch. 3 - The earth has a radius of 6380 km and turns around...Ch. 3 - BIO Dizziness. Our balance is maintained, at least...Ch. 3 - BIO Pilot Blackout in a Power Dive. A jet plane...Ch. 3 - A model of a helicopter rotor has four blades,...Ch. 3 - A Ferris wheel with radius 14.0 m is turning about...Ch. 3 - The radius of the earths orbit around the sun...Ch. 3 - BIO Hypergravity. At its Ames Research Center,...Ch. 3 - A railroad flatcar is traveling to the right at a...Ch. 3 - A moving sidewalk in an airport terminal moves at...Ch. 3 - Two piers, A and B, are located on a river; B is...Ch. 3 - A canoe has a velocity of 0.40 m/s southeast...Ch. 3 - The nose of an ultralight plane is pointed due...Ch. 3 - Crossing the River I. A river flows due south with...Ch. 3 - Crossing the River II. (a) In which direction...Ch. 3 - BIO Bird Migration. Canada geese migrate...Ch. 3 - An airplane pilot wishes to fly due west. A wind...Ch. 3 - CALC A rocket is Tired at an angle from the top of...Ch. 3 - CALC A faulty model rocket moves in the xy-plane...Ch. 3 - CALC If r=bt2i+ct3jwhere b and c are positive...Ch. 3 - CALC The position of a dragonfly that is flying...Ch. 3 - CP A test rocket starting from rest at point A is...Ch. 3 - CALC A bird flies in the .vv-plane with a velocity...Ch. 3 - A sly 1.5-kg monkey and a jungle veterinarian with...Ch. 3 - BIO Spiraling Up. Birds of prey typically rise...Ch. 3 - In fighting forest fires, airplanes work in...Ch. 3 - A movie stuntwoman drops from a helicopter that is...Ch. 3 - An airplane is flying with a velocity of 90.0 m/s...Ch. 3 - A cannon, located 60.0 m from the base of a...Ch. 3 - CP CALC A toy rocket is launched with an initial...Ch. 3 - An important piece of landing equipment must be...Ch. 3 - The longest Home Run. According to Guinness World...Ch. 3 - An Errand of Mercy. An airplane is dropping bales...Ch. 3 - A baseball thrown at an angle of 60.0 above the...Ch. 3 - A water hose is used to fill a large cylindrical...Ch. 3 - A grasshopper leaps into the air from the edge of...Ch. 3 - Figure P3.58 3.58Kicking an Extra Point. In...Ch. 3 - Look Out! A snow-ball rolls off a barn roof that...Ch. 3 - A boy 12.0 m above the ground in a tree throws a...Ch. 3 - Suppose that the boy in Problem 3.60 throws the...Ch. 3 - A rock is thrown with a velocity V0, at an angle...Ch. 3 - Leaping the River II. A physics professor did...Ch. 3 - A 2.7-kg ball is thrown upward with an initial...Ch. 3 - A 76.0-kg rock is rolling horizontally at the top...Ch. 3 - Tossing Your Lunch. Henrietta is jogging on the...Ch. 3 - A cart carrying a vertical missile launcher moves...Ch. 3 - A firefighting crew uses a water cannon that...Ch. 3 - In the middle of the night you are standing a...Ch. 3 - CP Bang! A student sits atop a platform a distance...Ch. 3 - An airplane pilot sets a compass course due west...Ch. 3 - Raindrops. When a trains velocity is 12.0 m/s...Ch. 3 - In a World Cup soccer match, Juan is running due...Ch. 3 - An elevator is moving upward at a constant speed...Ch. 3 - Two soccer players, Mia and Alice, are running as...Ch. 3 - DATA A spring-gun projects a small rock from the...Ch. 3 - DATA You have constructed a hair-spray-powered...Ch. 3 - DATA You are a member of a geological team in...Ch. 3 - CALC A projectile thrown from a point P moves in...Ch. 3 - Two students are canoeing on a river. While...Ch. 3 - CP A rocket designed to place small payloads into...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - A large number of seeds are observed, and their...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Kepler made a major break from ancient...
Cosmic Perspective Fundamentals
WHAT IF? Suppose a new fishery is discovered, and you are put in charge of developing it sustainably. What eco...
Campbell Biology (11th Edition)
4. How do gross anatomy and microscopic anatomy differ?
Human Anatomy & Physiology (2nd Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
You have generated three transgenic lines of maize that are resistant to the European corn borer, a significant...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A football receiver running straight downfield at 5.50 m/s is 10.0 m in front of the quarterback when a pass is thrown downfield at 25.0° above the horizon (Fig. P3.58). If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find (a) the football’s initial speed, (b) the amount of time the football spends in the air, and (c) the distance between the quarterback and the receiver when the catch is made.arrow_forwardAn athlete starts at point A and runs at a constant speed of 6.0 m/s around a circulartrack 100 m in diameter, as shown in Fig P3.40. Find the x and y-components of thisrunners’ average velocity and average acceleration between points (a) A and Barrow_forwardA landscape architect is planning an artificial waterfall in a city park.Water flowing at 0.750 m/s leaves the end of a horizontal channel at the top of a vertical wall h = 2.35 m high and falls into a pool (Fig. P3.70). (a) How far from the wall will the water land? Will the space behind the waterfall be wideenough for a pedestrian walkway? (b) To sell her plan to the city council, the architect wants to build a model to standard scale, one-twelfth actual size. How fast should the water flow in the channel in the model?arrow_forward
- A novice golfer on the green takes three strokes to sink the ball. The successivedisplacements of the ball are 4.00 m to the north, 2.00 m northeast, and 1.00 m at 30.0°west of south (Fig. P3.21). Starting at the same initial point, an expert golfer couldmake the hole in what single displacement?arrow_forwardA fireman d = 50.0 m away from a burning building directs a stream of water from a ground-level fire hose at an angle of θi = 30.0° above the horizontal as shown in Figure P3.32. If the speed of the stream as it leaves the hose is vi = 40.0 m/s, at what height will the stream of water strike the building?arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 18.0 m/s. The cliff is 50.0 m above a flat, +18.0 m/s horizontal beach as shown in h= 50.0 m Figure P3.7. (a) What are the coordinates of the initial posi- tion of the stone? (b) What are the components of the initial velocity? (c) Write the equations for the x- and y-components of the velocity of the stone with time. (d) Write the equations for the position of the stone Figure P3.7arrow_forward
- 19. A playground is on the flat roof of a city school, 6.00 m above the street below (Fig. P3.19). The vertical wall of the building is h = 7.00 m high, to form a 1-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of 0 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. a. Find the speed at which the ball was launched. Answer + b. Find the vertical distance by which the ball clears the wall. Answer c. Find the horizontal distance from the wall to the point on the roof where the ball lands. Figure P3.19 ATO FEB 9.arrow_forwardAn Olympic diver is on a diving platform 3.50 m above the water. To start her dive, she runs off of the platform with a speed of 1.3 m/s in the horizontal direction. What is the diver's speed, in m/s, just before she enters the water? m/sarrow_forwardOne of the fastest recorded pitches in major league baseball, thrown by Tim Lincecum in 2009, was clocked at 101.0 mi/h (Fig. P3.8). If a pitch were thrown horizontally with this veloc- ity, how far would the ball fall vertically by the time it reached home plate, 60.5 ft away? GIA NT Figure P3.8 Tim Lincecum throws a baseball.arrow_forward
- Problem 5: A soccer goal is 2.44 m high. A player kicks the ball from a horizontal distance of 9.7 m from the goal, and the ball hits the crossbar at the top of the goal. The launch angle was 29.1 degrees above horizontal. What was the initial speed of the ball, in m/s?arrow_forwardA soccer goal is 2.44 m high. A player kicks the ball from a horizontal distance of 13.4 m from the goal, and the ball hits the crossbar at the top of the goal. The launch angle was 33.9 degrees above horizontal. What was the initial speed of the ball, in m/s?arrow_forwarda student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 18.0 m/s. the cliff is 50.0 m above a flat, horizontal beach as shown in figure p3.23. (a) what are the coor- dinates of the initial position of the stone? (b) what are the components of the initial velocity? (c) write the equations for the x- and y-components of the veloc- ity of the stone with time. (d) write the equations for the position of the stone with time, using the coor- dinates in figure p3.23. (e) how long after being released does the stone strike the beach below the cliffe (f) with what speed and angle of impact does the stone land? 23) e) 3.19 secs f) 36.1 m/s 60.1 degrees below the horizontalarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY