A large number of seeds are observed, and their initial launch angles are recorded. The range of projection angles is found to be −51° to 75°, with a mean of 31°. Approximately 65% of the seeds arc launched between 6° and 56°. (See W. J. Garrison et al, “Ballistic seed projection in two herbaceous species,” Amer. J. Bot ., Sept. 2000, 87:9, 1257–64.) Which of these hypotheses is best supported by the data? Seeds are preferentially launched (a) at angles that maximize the height they travel above the plant; (b) at angles below the horizontal in order to drive the seeds into the ground with more force; (c) at angles that maximize the horizontal distance the seeds travel from the plant; (d) at angles that minimize the time the seeds spend exposed to the air.
A large number of seeds are observed, and their initial launch angles are recorded. The range of projection angles is found to be −51° to 75°, with a mean of 31°. Approximately 65% of the seeds arc launched between 6° and 56°. (See W. J. Garrison et al, “Ballistic seed projection in two herbaceous species,” Amer. J. Bot ., Sept. 2000, 87:9, 1257–64.) Which of these hypotheses is best supported by the data? Seeds are preferentially launched (a) at angles that maximize the height they travel above the plant; (b) at angles below the horizontal in order to drive the seeds into the ground with more force; (c) at angles that maximize the horizontal distance the seeds travel from the plant; (d) at angles that minimize the time the seeds spend exposed to the air.
A large number of seeds are observed, and their initial launch angles are recorded. The range of projection angles is found to be −51° to 75°, with a mean of 31°. Approximately 65% of the seeds arc launched between 6° and 56°. (See W. J. Garrison et al, “Ballistic seed projection in two herbaceous species,” Amer. J. Bot., Sept. 2000, 87:9, 1257–64.) Which of these hypotheses is best supported by the data? Seeds are preferentially launched
(a) at angles that maximize the height they travel above the plant; (b) at angles below the horizontal in order to drive the seeds into the ground with more force; (c) at angles that maximize the horizontal distance the seeds travel from the plant; (d) at angles that minimize the time the seeds spend exposed to the air.
An infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure.
What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod?
Express your answer in terms of λ, r, and ϵ0, the permittivity of free space.
What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?
A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?
Two small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere.
What is the magnitude E of the electric field midway between the spheres?
Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?
Chapter 3 Solutions
University Physics with Modern Physics (14th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.