(a)
Interpretation:
The function of the operational amplifier 1 should be determined.
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here, the given electronic circuit is as below:
Explanation of Solution
Given information:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below:
It can be seen that the operational amplifier 1 here performing the function of inverting voltage amplifier.
(b)
Interpretation:
The function of the operational amplifier 2 should be determined.
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below:
It can be seen that the operational amplifier 2 here performing the function of integrating circuit and hence the integration.
(c)
Interpretation:
The output voltage during the interval
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below:
Here the input voltage
Where
As per the problem switches
Here, the output signal can be given by the formula as below
Now assume
Substitute the values in the above equation and simplify, the result obtained is
The integrating voltage at different time intervals is given as:
Time(s) | Output Voltage (V) |
1 | 1 |
4 | 16 |
6 | 36 |
8 | 64 |
11 | 121 |
20 | 40 |
The plot can be obtained as shown below:
(d)
Interpretation:
The output voltage during the second interval
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Here the input voltage
Where
As per the problem switches
Here the output signal can be given by the formula as below
Where
Therefore, it can be said that
The output of the second operational amplifier which is actually the final output can be given by the equation as below:
Where
Now assume
Substitute the values in the above equation and simplify, the result obtained is
The integrating voltage at different time intervals is given as:
Time(s) | Output Voltage (V) |
1 | -1 |
4 | -16 |
6 | -36 |
8 | -64 |
11 | -121 |
20 | -40 |
The plot can be obtained as shown below:
(e)
Interpretation:
The output voltage
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Since there is no current so capacitor will discharge. And circuit will act as differentiator.
Further, it can be re-written as
The output can be given as
(f)
Interpretation:
The advantages and disadvantages of the given circuit over the normal amplifier should be described.
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Since there is no current so capacitor will discharge. And circuit will act as differentiator.
In general, the normal operational amplifier circuit can be used as a differentiator circuit only. But the given integrating circuit can be used as differentiator as well as integrator. Just one disadvantage is that the given circuit has higher noise level as compared to the normal circuit.
(g)
Interpretation:
The scenario if the input signal gets changes with the slope during the measurement cycle should be determined.
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Since there is no current so capacitor will discharge. And circuit will act as differentiator.
The output of the second operational amplifier which is actually the final output can be given by the equation as below:
Where
Now assume
Substitute the values in the above equation and simplify, the result obtained is
Further it can be written that
(h)
Interpretation:
The result obtained if the two-time intervals are separated by a time delay
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
For the given circuit the during the first time interval
Now if the two-time intervals are separated by a time delay
(i)
Interpretation:
The result if the two-time intervals were of different duration should be determined.
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
As its known that, if the two-time intervals are same then the plot of the output voltage is same in magnitude and opposite in sign for both the interval. But if the two-time intervals are of different duration then the magnitude of output signal will be different for both the time periods.
(j)
Interpretation:
The reason should be discussed for why the time interval is desirable to be as large as possible in measuring enzyme
Concept introduction:
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So, basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below:
Explanation of Solution
The operational amplifier is a high gain device and it amplifies the voltage. Generally, a voltage amplifier has a single output and differential input. So basically, an operational amplifier produces an output much higher than the input voltage. The output voltage could be thousands of times higher than the input voltage.
Here the given electronic circuit is as below
Since there is no current so capacitor will discharge. And circuit will act as differentiator.
The output of the second operational amplifier which is actually the final output can be given by the equation as below:
Where
Now, assume
Substitute the values in the above equation and simplify, the result obtained is
If the time gets larger then the output voltage also gets larger.
Enzyme kinematics are generally time-consuming process. So, its desirable to have larger time.
Want to see more full solutions like this?
Chapter 3 Solutions
Principles of Instrumental Analysis
- Use the following information to determine the enthalpy for the reaction shown below. → S(s) + O2(g) SO2(9) ΔΗ Π ? Reference reactions: S(s) + O2(g) SO3(9) 2SO2(g) + O2(g) → 2SO3(g) AHxn = -395kJ AHrxn = ― -198kJarrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardIndicate which of the following is not an element in its standard state at 25oC and 1 atm. Group of answer choices O2(g) H2(g) Ne(g) N(g) C(s, graphite)arrow_forward
- 6. Show how you would accomplish the following transformations. (Show the steps and reagents/solvents needed) 2-methylpropene →2,2-dimethyloxiran Iarrow_forward4) Answer the following exercise with curved arrows indicating who is a nucleophile or Who is the electrophile? 2.44 Predict the structure of the product formed in the reaction of the organic base pyridine with the organic acid acetic acid, and use curved arrows to indicate the direction of electron flow. 7 H3C OH N Pyridine Acetic acidarrow_forwardUsing the data provided please help me answer this question. Determine the concentration of the iron(Ill) salicylate in the unknown directly from to graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight line.arrow_forward
- Please help me figure out what the slope is and how to calculate the half life Using the data provided.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Follow the curved arrows and draw the structure of the missing reactants, intermediates, or products in the following mechanism. Include all lone pairs. Ignore stereochemistry. Ignore inorganic byproducts. H Br2 (1 equiv) H- Select to Draw Starting Alkene Draw Major Product I I H2O 四: ⑦.. Q Draw Major Charged Intermediate Iarrow_forwardNH (aq)+CNO (aq) → CO(NH2)2(s) Experiment [NH4] (M) [CNO] (M) Initial rate (M/s) 1 0.014 0.02 0.002 23 0.028 0.02 0.008 0.014 0.01 0.001 Calculate the rate contant for this reaction using the data provided in the table.arrow_forward
- 2CIO2 + 20H-1 CIO31 + CIO2 + H2O Experiment [CIO2], M [OH-1], M 1 0.0500 0.100 23 2 0.100 0.100 3 0.100 0.0500 Initial Rate, M/s 0.0575 0.230 0.115 ... Given this date, calculate the overall order of this reaction.arrow_forward2 3 .(be)_[Ɔ+(be)_OI ← (b²)_IƆO+ (be)_I Experiment [1-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 0.000069 4 0.0025 0.0025 0.000140 Calculate the rate constant of this reaction using the table data.arrow_forward1 2 3 4 I(aq) +OCl(aq) → IO¯¯(aq) + Cl¯(aq) Experiment [I-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 Calculate the overall order of this reaction using the table data. 0.0025 0.000069 0.0025 0.000140arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning