Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.8QAP
Interpretation Introduction

(a)

Interpretation:

Current follower that will produce a 1.0 V output for 10.0 µA input current should be designed.

Concept introduction:

Operational amplifiers can be used to measure or process currents by connecting them in the current follower mode. This mode provides a nearly zero resistance load to the current source and prevents it from being loaded by a measuring device or circuit.

Principles of Instrumental Analysis, Chapter 3, Problem 3.8QAP , additional homework tip  1

Here,

V+, V- = input voltages

Vs = Input difference voltage

V0 = output voltage

ib = input bias current

if = feedback current

ii = input current

Rf = feedback resistor

Also,

Rf=V0ii

Interpretation Introduction

(b)

Interpretation:

Effective input resistance of the current follower designed in part (a) should be calculated.

Concept introduction:

Principles of Instrumental Analysis, Chapter 3, Problem 3.8QAP , additional homework tip  2

Here,

V+, V- = input voltages

Vs = Input difference voltage

V0 = output voltage

ib = input bias current

if = feedback current

ii = input current

Rf = feedback resistor

Ri = effective input resistance

A = open loop gain

Also,

Ri=RfA

Interpretation Introduction

(c)

Interpretation:

The percent relative error for the circuit designed in part (a) for an input current of 25 µA should be calculated.

Concept introduction:

Principles of Instrumental Analysis, Chapter 3, Problem 3.8QAP , additional homework tip  3

Here,

V+, V- = input voltages

Vs = Input difference voltage

V0 = output voltage

ib = input bias current

if = feedback current

ii = input current

Rf = feedback resistor

Ri = effective input resistance

A = open loop gain

Here,

Rf=V0ii

Also,

Ri=RfA 

Thus,

Relative error percentage = RiRL+Ri×100

Blurred answer
Students have asked these similar questions
MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10 Consider the following reaction: CH3OH(g) CO(g) + 2H2(g) (Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.) Part A Calculate AG for this reaction at 25 °C under the following conditions: PCH₂OH Pco PH2 0.815 atm = 0.140 atm 0.170 atm Express your answer in kilojoules to three significant figures. Ο ΑΣΦ AG = -150 Submit Previous Answers Request Answer □? kJ × Incorrect; Try Again; 2 attempts remaining Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship: AGrxn = AGrxn + RTInQ, AGxn+RTInQ, where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a is the reaction quotient. Provide Feedback Next >
Identify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.
Identify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage