Perform the following estimations without using a calculator.
- Estimate the mass of water (kg) in an Olympic-size swimming pool.
- A drinking glass is being filled from a pitcher. Estimate die mass flow rate of the water (g/s).
- Twelve male heavyweight boxers coincidentally get on the same elevator in Great Britain. Posted on the elevator wall is a sign that gives the maximum safe combined weight of the passengers, Wmax, in stones. (A stone is a unit of mass equal to 14 lbm. It is commonly used in England as a measure of body weight, which, like the numerical equivalence between the lbm and lbf, is only valid at or near sea level.) If you were one of the boxers, estimate the lowest value of Wniaxfor which you would feel comfortable remaining on the elevator.
- The Trans-Alaska Pipeline has an outside diameter of 4 ft and extends 800 miles from the North Slope of Alaska to the northernmost ice-free port in Valdez, Alaska. How many barrels of oil arc required to fill the pipeline?
- Estimate the volume of your body (cm3) in two different ways. (Show your work.)
- A solid block is dropped into water and very slowly sinks to the bottom. Estimate its specific gravity.
(a)
Interpretation:
The mass of water (kg) in an Olympic-size pool should be estimated.
Concept introduction:
The density is the ratio of mass and volume given as:
Here, m is mass and V is volume
Answer to Problem 3.1P
Explanation of Solution
Let,
The size of a pool is
The density of water is
Since, the formula for density is:
Thus,
The mass of water is:
(b)
Interpretation:
The mass flow rate of the water (g/s) should be estimated.
Concept introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
The relationship between US and SI units are,
Answer to Problem 3.1P
Explanation of Solution
We can assume that the pitcher is a ‘large jug’.
In US standard system the volume of a drinking water glass is 8 oz and we can assume that the glass can be filled within 2 seconds using the pitcher.
The answer can be calculated as:
(c)
Interpretation:
The lowest value of maximum weight (Wmax) for which you would feel comfortable remaining on the elevator should be estimated.
Concept introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor. A stone is a unit of mass equal to 14 lbm.
Answer to Problem 3.1P
220 stones.
Explanation of Solution
A boxer who weight 220 lbm or above is considered as the boxer in heavy weight category.
The weight of a boxer can be considered as 220 lbm.
So calculate the minimum weight,
Where
(d)
Interpretation:
The number of barrels of oil required to fill the pipeline should be calculated.
Concept introduction:
The pipeline has an outside diameter of 4 ft and extends 800 miles.
The volume of a pipe (V) is given by,
Where, D = diameter of the pipe and L = length of the pipe
Answer to Problem 3.1P
Explanation of Solution
Let,
There are 42 gals in 1 barrel.
1 mile = 5880 ft
So the number of barrels in the pipe line can be calculated as,
(e)
Interpretation:
The volume of your body should be estimated in two different ways.
Concept introduction:
The density is the ratio of mass and volume given as:
Here, m is mass and V is volume
Answer to Problem 3.1P
The answer is
Explanation of Solution
Given Information:
The volume of the person is
Calculation:
Method 1:
Assume that the volume of the person can be considered as,
Height = 6 ft, width = 1 ft, thickness (distance between heal and toe) = 0.5 ft
Unit conversion,
1 ft3= 28 317 cm3
The volume of the person,
Method 2:
Assume,
The weight of the person to be 150 lbm
The density of the person to be 62.4 lbm / ft3
Volume = mass / density
The volume of the person,
(f)
Interpretation:
The specific gravity of a solid block in water should be calculated.
Concept introduction:
The specific gravity of a body with respect to water is calculated by taking ratio of density of that body to the density of water. It is also related to molar mass as follows:
Here,
Answer to Problem 3.1P
Explanation of Solution
Since, the solid block sinks into the water very slowly, the density of block should be close to the density of water. So, assume density of the block to be 1050 kg / m3.
The Specific gravity is calculated as follows:
Putting the values,
Want to see more full solutions like this?
Chapter 3 Solutions
Elementary Principles of Chemical Processes
Additional Engineering Textbook Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Concepts Of Programming Languages
Electric Circuits. (11th Edition)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Database Concepts (8th Edition)
Degarmo's Materials And Processes In Manufacturing
- The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardstep by step pleasearrow_forwardstep by step pleasearrow_forward
- step by steparrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forward
- O Consider a 0.8 m high and 0.5 m wide window with thickness of 8 mm and thermal conductivity of k = 0.78 W/m °C. For dry day, the temperature of outdoor is -10 °C and the inner room temperature is 20°C. Take the heat transfer coefficient on the inner and outer surface of the window to be h₁ = 10 W/m² °C and h₂ = 40 W/m² °C which includes the effects of insulation. Determine:arrow_forwardCalculate the mass flow rate of the steam. Determine Cp and C₁ of steam.arrow_forwardstep by step pleasearrow_forward
- step by steparrow_forward4. Show that the fraction, F, of the energy released from a supercritical chain reaction that originates in the final m generations of the chain is given approximately by F= 1 km provided the total number of generations is large.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP A solution containing 7.5% sulfuric acid by weight at 70 °F is concentrated to 45% by weight by evaporating water. The concentrated solution and the water vapor exit the evaporator at 170 °F and 1 atm. Calculate the rate at which heat must be transferred to the evaporator to process 1500 lbm/hr of the feed solution to the evaporator. It is recommended to use the enthalpy-concentration diagram for sulfuric acid from Chapter 8 of Felder's book or an enthalpy-concentration diagram for sulfuric acid found in another unit operations book or chemical engineering manual such as Perry's.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The