(a)
The formula for the viscosity of the liquid.

Answer to Problem 3.177P
The formula for the viscosity of the liquid is
Explanation of Solution
Given information:
The flow rate is
The Figure-(1) shows the section (1) and the section (2) for the given system.
Figure-(1)
Write the expression for the Bernoulli’s equation between the section (1) and section (2) of the given system.
Here, the pressure at inlet is
Write the expression for the head loss due to friction in the pipe region.
Here, the lead loss due to friction is
Since the pressure at the inlet and outlet are same so,
Since the fluid is stationary at section (1), so the velocity of fluid at section (1) is zero.
Write the expression for the height of section (2) from datum.
Substitute
Write the expression for the flow rate at section (2).
Here, the flow rate is
Write the expression for the area at section (2).
Substitute
Substitute
Further solve the above expression.
Conclusion:
The formula for the viscosity of the liquid is
(b)
The viscosity of the fluid.

Answer to Problem 3.177P
The viscosity of the fluid is
Explanation of Solution
Given information:
The diameter of the pipe is
Write the expression for the viscosity.
Calculation:
Substitute
Further solve the above expression.
Conclusion:
The viscosity of the fluid is
(c)
The name of the fluid having viscosity

Answer to Problem 3.177P
The name of the fluid having viscosity
Explanation of Solution
Given information:
The viscosity of the fluid is
Refer to the viscosity table for liquids to obtain the fluid having viscosity
Here, the dynamic viscosity of propyl alcohol is
Thus, the fluid could be propyl alcohol.
Conclusion:
The name of the fluid having viscosity
(d)
Whether the Reynolds number is less than

Answer to Problem 3.177P
Yes, the Reynolds number is less than
Explanation of Solution
Given information:
The diameter of the pipe is
Write the expression for the Reynolds number.
Here, the Reynolds number is
Write the expression for the velocity at section (2).
Substitute
Calculation:
Substitute
Thus, the Reynolds number is
Conclusion:
Yes, the Reynolds number is less than
Want to see more full solutions like this?
Chapter 3 Solutions
Fluid Mechanics, 8 Ed
- B/16. The plane area shown in the top portion of the figure is rotated 180° about the x‐axis to form the body of revolution of mass m shown in the lower portion of the figure. Determine the mass moment of inertia of the body about the x‐axis. Answer Givenarrow_forward(read image) Answer:arrow_forward(read image) Answer:arrow_forward
- 2nd Law of Thermodynamics A 1.5-ft3 rigid tank contains saturated refrigerant-134 at 170 psia. Initially, 20 percent of the volume isoccupied by liquid and the rest by vapor. A valve at the top of the tank is now opened, and vapor is allowedto escape slowly from the tank. Heat is transferred to the refrigerant such that the pressure inside the tankremains constant. The valve is closed when the last drop of liquid in the tank is vaporized. Determine thetotal heat transfer for this process.arrow_forwardDraw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum normal stress due to bending. 4.8 kips/ft 32 kips B C D E I Hinge 8 ft. 2 ft 5 ft 5 ft W12 x 40arrow_forward2nd Law of Thermodynamics A rigid, insulated tank that is initially evacuated is connected through a valve to the supply line that carrieshelium at 300 kPa and 140◦C. Now the valve is opened, and helium is allowed to flow into the tank until thepressure reaches 300 kPa, at which point the valve is closed. Determine the flow work of the helium in thesupply line and the final temperature of the helium in the tank.arrow_forward
- Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum normal stress due to bending. 5 kips 10 kips B I W14 x 22 -5 ft -8 ft 5 ft-arrow_forward2nd Law of Thermodynamics Liquid water at 200 kPa and 25◦C is heated in a chamber by mixing it with superheated steam at 200 kPaand 250◦C. cold water enters the chamber at a rate of 2 kg/s. If the mixture leaves the mixing chamber at50◦C, determine the mass flow rate of the superheated steam required.arrow_forwardThe 2nd Law of Thermodynamics Refrigerant-134a enters the compressor of a refrigeration system as saturated vapor at 0.16 MPa, and leavesas superheated vapor at 0.9 MPa and 70◦C at a rate of 0.08 kg/s. Determine the rates of energy transfers bymass into and out of the compressor. Assume the kinetic and potential energies are negligible.arrow_forward
- 2nd Law of Thermodynamics Water enters the tubes of a cold plate at 65◦C with an average velocity of 50 ft/min and leaves at 110◦F. Thediameter of the tubes is 0.2 in. Assuming 20 percent of the heat generated is dissipated from the componentsto the surroundings by convection and radiation, and the remaining 80 percent is removed by the coolingwater, determine the amount of heat generated by the electronic devices mounted on the cold plate.arrow_forwardThe 2nd Law of Thermodynamics Refrigerant-134a enters a diffuser steadily as saturated vapor 500 kPa with a velocity of 170 m/s, and it leavesat 600 kPa and 50◦C. the refrigerant is gaining heat at a rate of 2.5 kJ/s as it passes through the diffuser. Ifthe exit area is 75 percent greater than the inlet area, determine (a) the exit velocity (b) the mass flow rate of the refrigerant.arrow_forward2nd Law of Thermodynamics Refrigerant-134a is throttled from the saturated liquid state at 850 kPa to a pressure of 200 kPa. Determinethe temperature drop during this process and the final specific volume of the refrigerant.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





