Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.95P
<
To determine
(a)
To calculate:
The depth h of the tank which is required to hold the plate.
<
To determine
(b)
To evaluate:
The tank diameter. .
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(read image, answer given)
6/86 The connecting rod AB of a certain internal-combustion engine weighs 1.2 lb with mass center at G
and has a radius of gyration about G of 1.12 in. The piston and piston pin A together weigh 1.80 lb. The
engine is running at a constant speed of 3000 rev/min, so that the angular velocity of the crank is
3000(2)/60 = 100л rad/sec. Neglect the weights of the components and the force exerted by the gas in
the cylinder compared with the dynamic forces generated and calculate the magnitude of the force on the
piston pin A for the crank angle 0 = 90°. (Suggestion: Use the alternative moment relation, Eq. 6/3, with B
as the moment center.)
Answer
A = 347 lb
3"
1.3"
B
1.7"
PROBLEM 6/86
6/85 In a study of head injury against the instrument panel of a car during sudden or crash stops where
lap belts without shoulder straps or airbags are used, the segmented human model shown in the figure is
analyzed. The hip joint O is assumed to remain fixed relative to the car, and the torso above the hip is
treated as a rigid body of mass m freely pivoted at O. The center of mass of the torso is at G with the initial
position of OG taken as vertical. The radius of gyration of the torso about O is ko. If the car is brought to a
sudden stop with a constant deceleration a, determine the speed v relative to the car with which the
model's head strikes the instrument panel. Substitute the values m = 50 kg, 7 = 450 mm, r = 800 mm, ko
= 550 mm, 0 = 45°, and a = 10g and compute v.
Answer
v = 11.73 m/s
PROBLEM 6/85
Chapter 3 Solutions
Fluid Mechanics, 8 Ed
Ch. 3 - Prob. 3.1PCh. 3 - Consider the angular momentum relation in the form...Ch. 3 - For steady low-Reynolds-number (laminar) flow...Ch. 3 - Water at 20°C flows through a long elliptical duct...Ch. 3 - Water at 20°C flows through a 5-in-diameter smooth...Ch. 3 - Water fills a cylindrical tank to depth h. The...Ch. 3 - A spherical tank, of diameter 35 cm, is leaking...Ch. 3 - Three pipes steadily deliver water at 20°C to a...Ch. 3 - A laboratory test tank contains seawater of...Ch. 3 - Water flowing through an 8-cm-diameter pipe enters...
Ch. 3 - Water flows from a faucet into a sink at 3 U.S....Ch. 3 - The pipe flow in Fig, P3.12 fills a cylindrical...Ch. 3 - The cylindrical container in Fig. P3.13 is 20 cm...Ch. 3 - The open tank in Fig. F3.14 contains water at 20°C...Ch. 3 - Water, assumed incompressible, flows steadily...Ch. 3 - P3.16 An incompressible fluid flows past an...Ch. 3 - Incompressible steady flow in the inlet between...Ch. 3 - Gasoline enters section 1 in Fig, P3.18 at 0.5...Ch. 3 - Water from a storm drain flows over an outfall...Ch. 3 - Oil (SG = 0.89) enters at section 1 in Fig, P3.20...Ch. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A thin layer of liquid, draining from an inclined...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - In some wind tunnels the test section is...Ch. 3 - A rocket motor is operati ng steadily, as shown in...Ch. 3 - In contrast to the liquid rocket in Fig. P3.34,...Ch. 3 - The jet pump in Fig. P3.36 injects water at U1 =...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - A wedge splits a sheet of 20°C water, as shown in...Ch. 3 - The water jet in Fig, P3,40 strikes normal to a...Ch. 3 - P3.41 In Fig. P3.41 the vane turns the water jet...Ch. 3 - Prob. 3.42PCh. 3 - P3.43 Water at 20°C flows through a 5-cm-diameter...Ch. 3 - P3.44 When a uniform stream flows past an immersed...Ch. 3 - Water enters and leaves the 6-cm-diameter pipe...Ch. 3 - When a jet strikes an inclined fixed plate, as in...Ch. 3 - A liquid jet of velocity Vjand diameter Djstrikes...Ch. 3 - The small boat in Fig. P3.48 is driven at a steady...Ch. 3 - The horizontal nozzle in Fig. P3.49 has D1 = 12 in...Ch. 3 - Prob. 3.50PCh. 3 - P3.51 A liquid jet of velocity Vj and area Aj...Ch. 3 - A large commercial power washer delivers 21...Ch. 3 - Prob. 3.53PCh. 3 - For the pipe-flow-reducing section of Fig. P3.54,...Ch. 3 - In Fig. P3.55 the jet strikes a vane that moves to...Ch. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - P3.62 Water at 20°C exits to the standard...Ch. 3 - Water flows steadily through the box in Fig....Ch. 3 - The 6-cm-diameter 20°C water jet in Fig. P3.64...Ch. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - P3.69 A uniform rectangular plate, 40 cm long and...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - When immersed in a uniform stream, a thick...Ch. 3 - P3.73 A pump in a tank of water at 20°C directs a...Ch. 3 - P3.74 Water at 20°C flows down through a vertical,...Ch. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - P3.79 The Saturn V rocket in the chapter opener...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Air at 20°C and 1 atm flows in a 25-cm-diameter...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - A water jet 3 in in diameter strikes a concrete...Ch. 3 - P3.95 A tall water tank discharges through a...Ch. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99PCh. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Suppose that the solid-propellant rocket of Prob....Ch. 3 - A rocket is attached to a rigid horizontal rod...Ch. 3 - Extend Prob. P3.104 to the case where the rocket...Ch. 3 - Actual airflow past a parachute creates a variable...Ch. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - Prob. 3.111PCh. 3 - A jet of alcohol strikes the vertical plate in...Ch. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - P3.116 For the container of Fig. P3.116 use...Ch. 3 - Water at 20°C, in the pressurized tank of Fig....Ch. 3 - P3.118 Bernoulli's 1738 treatise Hydrodynamica...Ch. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - The air-cushion vehicle in Fig, P3.123 brings in...Ch. 3 - Prob. 3.124PCh. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 -
P3.130 In Fig. P3.130 the fluid is gasoline at...Ch. 3 - Prob. 3.131PCh. 3 - Prob. 3.132PCh. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - Air, assumed frictionless, flows through a tube,...Ch. 3 - In Fig. P3.137 the piston drives water at 20°C....Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - Prob. 3.140PCh. 3 - Prob. 3.141PCh. 3 - Prob. 3.142PCh. 3 - Prob. 3.143PCh. 3 - Prob. 3.144PCh. 3 - Prob. 3.145PCh. 3 - The pump in Fig. P3.146 draws gasoline at 20°C...Ch. 3 - The very large water tank in Fig. P3.147 is...Ch. 3 - Prob. 3.148PCh. 3 - P3.149 The horizontal lawn sprinkler in Fig....Ch. 3 - Prob. 3.150PCh. 3 - Prob. 3.151PCh. 3 - Prob. 3.152PCh. 3 - Prob. 3.153PCh. 3 - Prob. 3.154PCh. 3 - Prob. 3.155PCh. 3 - Prob. 3.156PCh. 3 - Prob. 3.157PCh. 3 - Prob. 3.158PCh. 3 - Prob. 3.159PCh. 3 - Prob. 3.160PCh. 3 - Prob. 3.161PCh. 3 - The waterwheel in Fig. P3.162 is being driven at...Ch. 3 - Prob. 3.163PCh. 3 - Prob. 3.164PCh. 3 - Prob. 3.165PCh. 3 - A power plant on a river, as in Fig. P3.166, must...Ch. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - P3.169 When the pump in Fig. P3.169 draws 220 m3/h...Ch. 3 - Prob. 3.170PCh. 3 - P3.171 Consider a turbine extracting energy from a...Ch. 3 - Prob. 3.172PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177PCh. 3 - Prob. 3.178PCh. 3 - Prob. 3.179PCh. 3 - Prob. 3.180PCh. 3 - Prob. 3.181PCh. 3 - Prob. 3.182PCh. 3 - Prob. 3.183PCh. 3 - The large turbine in Fig. P3.184 diverts the river...Ch. 3 - Prob. 3.185PCh. 3 - Prob. 3.1WPCh. 3 - Prob. 3.2WPCh. 3 - Prob. 3.3WPCh. 3 - Prob. 3.4WPCh. 3 - W3.5 Consider a long sewer pipe, half full of...Ch. 3 - Put a table tennis ball in a funnel, and attach...Ch. 3 - How does a siphon work? Are there any limitations...Ch. 3 - Prob. 3.1FEEPCh. 3 - Prob. 3.2FEEPCh. 3 - In Fig, FE3.1 water exits from a nozzle into...Ch. 3 - Prob. 3.4FEEPCh. 3 - Prob. 3.5FEEPCh. 3 - FE3.6 A fireboat pump delivers water to a...Ch. 3 - A fireboat pump delivers water to a vertical...Ch. 3 - Prob. 3.8FEEPCh. 3 - Water flowing in a smooth 6-cm-diameter pipe...Ch. 3 - Prob. 3.10FEEPCh. 3 - In a certain industrial process, oil of density ...Ch. 3 - Prob. 3.2CPCh. 3 - Prob. 3.3CPCh. 3 - Prob. 3.4CPCh. 3 - Prob. 3.5CPCh. 3 - Prob. 3.1DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using AutoCADarrow_forward340 lb 340 lb Δarrow_forward4. In a table of vector differential operators, look up the expressions for V x V in a cylindrical coordinate system. (a) Compute the vorticity for the flow in a round tube where the velocity profile is = vo [1-(³] V₂ = Vo (b) Compute the vorticity for an ideal vortex where the velocity is Ve= r where constant. 2πг (c) Compute the vorticity in the vortex flow given by Ve= r 2лг 1- exp ( r² 4vt (d) Sketch all the velocity and vorticity profiles.arrow_forward
- In the figure, Neglects the heat loss and kinetic and potential energy changes, calculate the work produced by the turbine in kJ T = ??? Steam at P=3 MPa, T = 280°C Turbine Rigid tank V = 1000 m³ Turbine Rigid tank V = 100 m³ V = 1000 m³ V = 100 m³ The valve is opened. Initially: evacuated (empty) tank O a. 802.8 Initially: Closed valve O b. 572 O c. 159.93 Od. 415 e. 627.76 equilibriumarrow_forwardPlease find the torsional yield strength, the yield strength, the spring index, and the mean diameter. Use: E = 28.6 Mpsi, G = 11.5 Mpsi, A = 140 kpsi·in, m = 0.190, and relative cost= 1.arrow_forwardA viscoelastic column is made of a material with a creep compliance of D(t)= 0.75+0.5log10t+0.18(log10t)^2 GPA^-1 for t in s. If a constant compressive stress of σ0 = –100 MPa is applied at t = 0, how long will it take (= t1/2) for the height of the column to decrease to ½ its original value? Note: You will obtain multiple answers for this problem! One makes sense physically and one does not.arrow_forward
- A group of 23 power transistors, dissipating 2 W each, are to be cooled by attaching them to a black-anodized square aluminum plate and mounting the plate on the wall of a room at 30°C. The emissivity of the transistor and the plate surfaces is 0.9. Assuming the heat transfer from the back side of the plate to be negligible and the temperature of the surrounding surfaces to be the same as the air temperature of the room, determine the length of the square plate if the average surface temperature of the plate is not to exceed 50°C. Start the iteration process with an initial guess of the size of the plate as 43 cm. The properties of air at 1 atm and the film temperature of (Ts + T)/2 = (50 + 30)/2 = 40°C are k = 0.02662 W/m·°C, ν = 1.702 × 10–5 m2 /s, Pr = 0.7255, and β = 0.003195 K–1. Multiple Choice 0.473 m 0.284 m 0.513 m 0.671 marrow_forwardA 40-cm-diameter, 127-cm-high cylindrical hot water tank is located in the bathroom of a house maintained at 20°C. The surface temperature of the tank is measured to be 44°C and its emissivity is 0.4. Taking the surrounding surface temperature to be also 20°C, determine the rate of heat loss from all surfaces of the tank by natural convection and radiation. The properties of air at 32°C are k=0.02603 W/m-K, v=1.627 x 10-5 m²/s, Pr = 0.7276, and ẞ = 0.003279 K-1 The rate of heat loss from all surfaces of the tank by natural convection is The rate of heat loss from all surfaces of the tank by radiation is W. W.arrow_forwardA 2.5-m-long thin vertical plate is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. The plate surface has an emissivity of 0.73, and its midpoint temperature is 55°C. Determine the heat flux subjected on the plate surface. Uniform heat flux -Plate, € = 0.73 Cool air 5°C 7 TSUIT Given: The properties of water at Tf,c= 30°C. k=0.02588 W/m.K, v=1.608 x 10-5 m²/s Pr = 0.7282 The heat flux subjected on the plate surface is W/m²arrow_forward
- Hot water is flowing at an average velocity of 5.82 ft/s through a cast iron pipe (k=30 Btu/h-ft-°F) whose inner and outer diameters are 1.0 in and 1.2 in, respectively. The pipe passes through a 50-ft-long section of a basement whose temperature is 60°F. The emissivity of the outer surface of the pipe is 0.5, and the walls of the basement are also at about 60°F. If the inlet temperature of the water is 150°F and the heat transfer coefficient on the inner surface of the pipe is 30 Btu/h-ft².°F, determine the temperature drop of water as it passes through the basement. Evaluate air properties at a film temperature of 105°C and 1 atm pressure. The properties of air at 1 atm and the film temperature of (Ts+ T∞)/2 = (150+60)/2 = 105°F are k=0.01541 Btu/h-ft-°F. v=0.1838 × 10-3 ft2/s, Pr = 0.7253, and ẞ = 0.00177R-1arrow_forwardhand-written solutions only, please. correct answers upvoted!arrow_forwardhand-written solutions only, please. correct answers upvoted!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY