
Fundamentals Of Thermodynamics
10th Edition
ISBN: 9781119494966
Author: Borgnakke, C. (claus), Sonntag, Richard Edwin, Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.137P
To determine
The two properties to calculate the final system and heat transfer in the process.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A hollow metal sphere of outer radius or = 2 cm is heated internally with a variable output electricheater. The sphere loses heat from its surface by convection and radiation. The heat transfercoefficient is 22 W/ m2 - o C and surface emissivity is 0.92. The ambient fluid temperature is 20 o C andthe surroundings temperature is 14 oC. Construct a graph of the surface temperature corresponding toheating rates ranging from zero to 100 watts. Assume steady state. Use a simplified model forradiation exchange based on a small gray surface enclosed by a much larger surface at 14 o C.
2. A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B,
but some information still needs to be filled in. Compute the tool locations, depths, and other
missing information to present a completed program. (Hint: You may have to look up geometry
for the center drill and standard 0.5000 in twist drill to know the required depth to drill).
Dashed line indicates -
corner of original stock
Intended toolpath-tangent -
arc entry and exit sized to
programmer's judgment
026022 (Slot and Drill Part)
(Setup Instructions.
(UNITS: Inches
(WORKPIECE MAT'L: SAE 1020 STEEL
(Workpiece: 3.25 x 2.00 x0.75 in. Plate
(PRZ Location G54:
( XY 0.0 Upper Left of Fixture
( TOP OF PART 2-0
(Tool List:
)
(
T04
T02 0.500 IN 4 FLUTE FLAT END MILL)
#4 CENTER DRILL
'
T02
0.500 TWIST DRILL
N010 GOO G90 G17 G20 G49 G40 G80 G54
N020 M06 T02 (0.5 IN 4-FLUTE END MILL)
R0.750
N030 S760 M03 G00 x
N040 043 H02 2
Y
(P1)
(RAPID DOWN -TLO)
P4
NO50 MOB (COOLANT ON)
N060 G01 X
R1.000
N070…
6–95. The reaction of the ballast on the railway tie can be assumed uniformly distributed over its length as shown. If the wood has an allowable bending stress of σallow=1.5 ksi, determine the required minimum thickness t of the rectangular cross section of the tie to the nearest 18 in. Please include all steps. Also if you can, please explain how you found Mmax using an equation rather than using just the moment diagram. Thank you!
Chapter 3 Solutions
Fundamentals Of Thermodynamics
Ch. 3 - What is 1cal in SI units and what is the name...Ch. 3 - A car engine is rated at 110kW . What is the power...Ch. 3 - Why do we write E or E2E1 , whereas we write 1Q2...Ch. 3 - If a process in a control mass increases energy...Ch. 3 - Assume a physical setup as in Fig. P3.6(a). We now...Ch. 3 - Figure P3.6 shows three physical situations. Show...Ch. 3 - For the indicated physical setup in (a), (b), and...Ch. 3 - Assume the physical situation in Fig. P3.6b; what...Ch. 3 - Figure P3.9 shows three physical situations; show...Ch. 3 - That can you say about the beginning state of the...
Ch. 3 - A thermopane window traps some gas between the two...Ch. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - The electric bill is calculating usage in kWh....Ch. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - You heat a gas 10K at P=C . Which one in Table A.5...Ch. 3 - You mix 20C water with 50C water in an open...Ch. 3 - A piston motion moves a 25kg hammerhead vertically...Ch. 3 - A pump pushes 1000m3 of liquid water at 15C up to...Ch. 3 - A 1200kg car accelerates from zero to 100km/h over...Ch. 3 - A hydraulic hoist raises a 1750kg car 1.8m in an...Ch. 3 - Prob. 3.24PCh. 3 - A hydraulic cylinder of area 0.01m2 must push a...Ch. 3 - A hydraulic cylinder has a piston cross-sectional...Ch. 3 - A bulldozer pushes 800kg of din l00m with a force...Ch. 3 - Two hydraulic cylinders maintain a pressure of...Ch. 3 - A motor delivers 50hp on a drive shaft at 1800rpm...Ch. 3 - Solve Problem 3.24, but assume that the steam...Ch. 3 - The R4l0A in Problem 3.1 2c is at 1000kPa,50C with...Ch. 3 - A 400L tank, A (see Fig. P3.32), contains argon...Ch. 3 - A piston/cylinder assembly contains 2kg of liquid...Ch. 3 - Heat transfer to a 1.5kg block of ice at -10C...Ch. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - A piston cylinder contains 2kg of water at 20C...Ch. 3 - A nitrogen gas goes through a polytropic process...Ch. 3 - Helium gas expands from 125kPa,350K and 0.25m3 to...Ch. 3 - A balloon behaves so that the pressure is P=C2V1/3...Ch. 3 - A 15cm thick concrete wall, k=1.28W/mK , has a...Ch. 3 - The brake shoe and steel drum of a car...Ch. 3 - Prob. 3.42PCh. 3 - A power plant condenser (heat exchanger) transfers...Ch. 3 - Prob. 3.44PCh. 3 - A steel Pot, with conductivity of 15W/m and a 50mm...Ch. 3 - A wall surface on a house is 30C with an...Ch. 3 - A radiant heat lamp is a rod, tong and in diameter...Ch. 3 - A radiant beating lamp has a surface temperature...Ch. 3 - Determine the phase of the following substances...Ch. 3 - Find the phase and the missing properties of P, T,...Ch. 3 - Indicate the location of the four states in...Ch. 3 - Find the missing property of P, T, y, u, h, and x...Ch. 3 - Find the missing properties for carbon dioxide at...Ch. 3 - Find the missing property of P, T, y, u, h, and x...Ch. 3 - Saturated liquid water at 20C is compressed to a...Ch. 3 - Consider a steel bottle as a CV. It contains...Ch. 3 - A piston cylinder contains water with quality 75...Ch. 3 - Problem 3.137 and write the left-hand side...Ch. 3 - Saturated vapor R410A at 0C in a rigid tank is...Ch. 3 - A constant-pressure piston/cylinder assembly...Ch. 3 - A container is split in two equal volumes by a...Ch. 3 - A cylinder fined with a frictionless piston...Ch. 3 - A piston/cylinder contains 1.5kg of water at...Ch. 3 - Ammonia (0.5kg) in a piston cy1tnde at 200kPa,10C...Ch. 3 - A water-filled reactor with a volume of 1m3 is at...Ch. 3 - A rigid 1kg steel tank holds 0.75kg ammonia at 70C...Ch. 3 - Prob. 3.68PCh. 3 - A piston/cylinder arrangement with a linear spring...Ch. 3 - Prob. 3.70PCh. 3 - Assume the same setup as in Problem 3.66. but the...Ch. 3 - A rigid steel tank contains 0.5kgR410A at 0°C with...Ch. 3 - Redo the previous problem when you also consider...Ch. 3 - Prob. 3.74PCh. 3 - Supetheated refrigerant R-134a at 20°C and 100 kPa...Ch. 3 - In a sink, 5 L of water at 70°C is combined with 1...Ch. 3 - Prob. 3.77PCh. 3 - A copper block of volume 1 L s heat treated at...Ch. 3 - A car with mass 1275 kg is driven at 60 km h when...Ch. 3 - A piston cylinder (0.5 kg steel altogether)...Ch. 3 - An engine, shown in Fig P3.81, consists of a 100kg...Ch. 3 - Use the ideal gas air A.7 to evaluate the specific...Ch. 3 - Estimate the constant specific heats for R-134a...Ch. 3 - Find the change in u for carbon dioxide between...Ch. 3 - Nitrogen at 300 K. 3 MPa is heated to 500 K Find...Ch. 3 - Repeat Problem 3.84 for nitrogen gas.Ch. 3 - Find the change in enthalpy for carbon dioxide...Ch. 3 - Water at 20°C and 100 kPa is brought to l00 kPa...Ch. 3 - Prob. 3.89PCh. 3 - A rigid container has 2 kg of oxygen gas at l00...Ch. 3 - Air (3kg) is in a piston cylinder similar to...Ch. 3 - A 10-m-high cylinder. with a cross-sectional area...Ch. 3 - A cylinder with a piston restrained by a linear...Ch. 3 - A constant pressure container is filled with 1 kg...Ch. 3 - A spring-loaded piston cylinder contains 1.5kg of...Ch. 3 - An insulated cylinder is divided into two pans of...Ch. 3 - Helium gas expands from 125 kPa, 350 K and 0.25m3...Ch. 3 - A piston cylinder device contains 0.1 kg of air at...Ch. 3 - A gasoline engine has a piston/cylinder with 0.1...Ch. 3 - Solve the previous problem using Table A.7.Ch. 3 - A piston/cylinder has nitrogen gas at 750 K and...Ch. 3 - A piston/cylinder assembly has 1 kg of propane gas...Ch. 3 - A piston cylinder arrangement of initial volume...Ch. 3 - A piston/cylinder assembly in a car contains 0.2 L...Ch. 3 - Air goes through a polytropic process with n=1.3...Ch. 3 - Saturated vapor R410A at 10°C of mass 0.6 kg is in...Ch. 3 - A helium gas heated at constant volume from 100...Ch. 3 - A piston/cylinder shown in Fig. P3.108 contains...Ch. 3 - A piston/cylinder has water at 200 kPa, x=0.5 and...Ch. 3 - Ten kilograms of water in a piston/cylinder...Ch. 3 - Water in piston/cylinder (Fig. P3.111) is a...Ch. 3 - A setup lake the one in Fig P3.108 has the R-410A...Ch. 3 - The piston/cylinder inFig. P3.113 contains 0.1 kg...Ch. 3 - A piston/cylinder arrangement contains 5 kg of...Ch. 3 - A piston/cylinder setup similar to Problem 3.110...Ch. 3 - A piston/cylinder contains air at 1000 kPa, 800 K...Ch. 3 - Prob. 3.117PCh. 3 - A 100-hp car engine has a drive shaft rotating at...Ch. 3 - Prob. 3.119PCh. 3 - As fresh-poured concrete hardens, the chemical...Ch. 3 - A 1.2-kg pot of water at 20°C is put on a stove...Ch. 3 - A computer in a closed room of volume 200m3...Ch. 3 - A 500-W heater is used to melt 2 kg of solid ice...Ch. 3 - A 3-kg mass of nitrogen gas at 2000 K, V=C , cools...Ch. 3 - Electric power as volts times amperes (P=Vi) ....Ch. 3 - A copper wire of diameter 2 mm is 10m long and...Ch. 3 - A battery is well insulated while being charged by...Ch. 3 - A sheet of rubberis stretched out over a ring of...Ch. 3 - Assume a balloon material with a constant surface...Ch. 3 - A soap bubble has a surface tension of =3104N/cm...Ch. 3 - According to Table 3.4 residential buildings in US...Ch. 3 - total energy use in the US from Table 3.4 for 2011...Ch. 3 - A wind turbine with 20m diameter rotors spins at...Ch. 3 - Prob. 3.134PCh. 3 - A house is being designed to use a thick concrete...Ch. 3 - A solar pond with 20°C salt water, Cp=3.8kJ/kg-K...Ch. 3 - Prob. 3.137PCh. 3 - A rigidtank is divided into tworooms,both...Ch. 3 - A piston/cylinder has a water volume separated in...Ch. 3 - The cylinder volume below the constant loaded...Ch. 3 - Air in tank B is at 200 kPa, 280 K and mass 1 kg....Ch. 3 - A piston/cylinder setup (Fig P3.110) contains 1 kg...Ch. 3 - Two kilograms of water is contained in a...Ch. 3 - A piston cylinder has 0.1 kg water at x=0.5 ,...Ch. 3 - A piston/cylinder arrangement has the piston...Ch. 3 - A vertical/cylinder (Fig. P3.146) has a 61.18-kg...Ch. 3 - Water in a piston/cylinder, similar to Fig P3.110,...Ch. 3 - A rigid container has two rooms filled with water,...Ch. 3 - Prob. 3.149PCh. 3 - A piston/cylinder setup, similar to Fig. P3.143,...Ch. 3 - A spherical balloon contains 2 kg of R-410A at 0°C...Ch. 3 - Prob. 3.152PCh. 3 - Prob. 3.153EPCh. 3 - Work as Fx has units of lbf ft. What is that in...Ch. 3 - Work in the expression in Eq. 3.18 or Eq. 3.22...Ch. 3 - Prob. 3.156EPCh. 3 - Prob. 3.157EPCh. 3 - You heat a gas 20 R at P=C . Which gas in Table...Ch. 3 - A piston motion moves a 50-lbm hammerhead...Ch. 3 - A pump pushes 35000ft3 of liquid water at 60 F up...Ch. 3 - Prob. 3.161EPCh. 3 - Prob. 3.162EPCh. 3 - Prob. 3.163EPCh. 3 - A car with tires of outer radius 12 in. drives...Ch. 3 - The R-410A in Problem 3.9(c) is at 150 psia, 120 F...Ch. 3 - Prob. 3.166EPCh. 3 - A nitrogen gas goes through apolytropic process...Ch. 3 - Find the rate of conduction heat transfer per unit...Ch. 3 - The sun shines on a 1500-ft2 road surface so that...Ch. 3 - Find the missing properties and give the phase of...Ch. 3 - Find the missing properties among (P,T,v,u,h)...Ch. 3 - Find the missing properties among (P,T,v,u,h)...Ch. 3 - Saturated vapor R-410A at 60 F in a rigid tank is...Ch. 3 - A containeris split in two equal volumes by a...Ch. 3 - Saturated vapor R-410A at 200 psia in a...Ch. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - Prob. 3.177EPCh. 3 - A water-filled reactor with a volume of 50ft3 is...Ch. 3 - Prob. 3.179EPCh. 3 - A piston/cylinder arrangement with a linear spring...Ch. 3 - Prob. 3.181EPCh. 3 - Prob. 3.182EPCh. 3 - Prob. 3.183EPCh. 3 - Prob. 3.184EPCh. 3 - Prob. 3.185EPCh. 3 - A closed rigid container is filled with 3 lbm...Ch. 3 - An insulated cylinder is divided into two parts of...Ch. 3 - Helium gas expands from 20 psia, 600 R, and 9ft3...Ch. 3 - Prob. 3.189EPCh. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - Prob. 3.191EPCh. 3 - A piston/cylinder contains air at 150 psia, 1400 R...Ch. 3 - A piston/cylinder has 2 lbm of R-134a at state 1...Ch. 3 - A force of 300 lbf moves a truck at a speed of 40...Ch. 3 - Prob. 3.195EPCh. 3 - Water is in a piston/cylinder maintaining constant...Ch. 3 - A mass of 6 lbm nitrogen gas at 3600 R, V=C ,...Ch. 3 - Prob. 3.198EPCh. 3 - Ammonia is contained in a sealed, rigid tank at 30...Ch. 3 - Water in a piston/cylinder, similar to Fig....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6–53. If the moment acting on the cross section is M=600 N⋅m, determine the resultant force the bending stress produces on the top board. Please explain each step. Please explain how you got the numbers and where you plugged them in to solve the problem. Thank you!arrow_forwardSolving coplanar forcesarrow_forwardComplete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 7118 Zero reference point 1.0005 1.0000 1.252 Bore C' bore 1.250 6.0000 .7118 0.2180 deep (3 holes) 2.6563 1.9445 3.000 diam. slot 0.3000 deep. 0.3000 wide 2.6563 1.9445arrow_forward
- Complete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 Zero reference point 7118 1.0005 1.0000 1.252 Bore 6.0000 .7118 Cbore 0.2180 deep (3 holes) 2.6563 1.9445 Figure 26.2 026022 (8lot and Drill Part) (Setup Instructions--- (UNITS: Inches (WORKPIECE NAT'L SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location 054: ' XY 0.0 - Upper Left of Fixture TOP OF PART 2-0 (Tool List ( T02 0.500 IN 4 FLUTE FLAT END MILL #4 CENTER DRILL Dashed line indicates- corner of original stock ( T04 T02 3.000 diam. slot 0.3000 deep. 0.3000 wide Intended toolpath-tangent- arc entry and exit sized to programmer's judgment…arrow_forwardA program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill).arrow_forwardWe consider a laminar flow induced by an impulsively started infinite flat plate. The y-axis is normal to the plate. The x- and z-axes form a plane parallel to the plate. The plate is defined by y = 0. For time t <0, the plate and the flow are at rest. For t≥0, the velocity of the plate is parallel to the 2-coordinate; its value is constant and equal to uw. At infinity, the flow is at rest. The flow induced by the motion of the plate is independent of z. (a) From the continuity equation, show that v=0 everywhere in the flow and the resulting momentum equation is მu Ət Note that this equation has the form of a diffusion equation (the same form as the heat equation). (b) We introduce the new variables T, Y and U such that T=kt, Y=k/2y, U = u where k is an arbitrary constant. In the new system of variables, the solution is U(Y,T). The solution U(Y,T) is expressed by a function of Y and T and the solution u(y, t) is expressed by a function of y and t. Show that the functions are identical.…arrow_forward
- Part A: Suppose you wanted to drill a 1.5 in diameter hole through a piece of 1020 cold-rolled steel that is 2 in thick, using an HSS twist drill. What values if feed and cutting speed will you specify, along with an appropriate allowance? Part B: How much time will be required to drill the hole in the previous problem using the HSS drill?arrow_forward1.1 m 1.3 m B 60-mm diameter Brass 40-mm diameter Aluminum PROBLEM 2.52 - A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of brass (E₁ = 105 GPa, α = 20.9×10°/°C) and portion BC is made of aluminum (Ę₁ =72 GPa, α = 23.9×10/°C). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of 42°C, (b) the corresponding deflection of point B.arrow_forward30 mm D = 40 MPa -30 mm B C 80 MPa PROBLEM 2.69 A 30-mm square was scribed on the side of a large steel pressure vessel. After pressurization, the biaxial stress condition at the square is as shown. For E = 200 GPa and v=0.30, determine the change in length of (a) side AB, (b) side BC, (c) diagnonal AC.arrow_forward
- Please solve in detail this problem thank youarrow_forward0,5 mm 450 mm 350 mm Bronze A = 1500 mm² E = 105 GPa प 21.6 × 10-PC Aluminum A = 1800 mm² £ = 73 GPa = a 23.2 × 10-PC PROBLEM 2.58 Knowing that a 0.5-mm gap exists when the temperature is 24°C, determine (a) the temperature at which the normal stress in the aluminum bar will be equal to -75 MPa, (b) the corresponding exact length of the aluminum bar.arrow_forward0.5 mm 450 mm -350 mm Bronze Aluminum A 1500 mm² A 1800 mm² E 105 GPa E 73 GPa K = 21.6 X 10 G < = 23.2 × 10-G PROBLEM 2.59 Determine (a) the compressive force in the bars shown after a temperature rise of 82°C, (b) the corresponding change in length of the bronze bar.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license