
Fundamentals Of Thermodynamics
10th Edition
ISBN: 9781119494966
Author: Borgnakke, C. (claus), Sonntag, Richard Edwin, Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.9P
Figure P3.9 shows three physical situations; show the possible process in a
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A shaft is loaded in bending and torsion such that Ma = 70 N·m, T₁ = 45 N · m, M =
55 N. m, and T = 35 N m. For the shaft, S₁ = 700 MPa and S = 560 MPa, and a fully
corrected endurance limit of S₂ = 210 MPa is assumed. Let K = 2.2 and K = 1.8. With a
Se
design factor of 2.0 determine the minimum acceptable diameter of the shaft using the
a) DE- Goodman
b) DE-Morrow
c) DE-Gerber
d) DE-SWT
The feed flow rate to an adiabatic continuous stirred tank reactor (CSTR) in which an exothermicreaction is occurring is increased from 1000 to 1400. kg/h, causing the outlet temperature to change as shown:a) Briefly explain on a physical basis why the temperature in this system oscillates after a step increasein the inlet flow rate. Be clear, complete, and concise. c) You know that this oscillating response cannot be that of two first order processes with real timeconstant acting in series. Assuming the reaction is first order and the CSTR operates with constant holdup,derive the block diagram with all transfer functions indicating how the temperature would respond to the feedflow rate step change (W’(s) as input and T’(s) as output). An intermediate variable in this block diagram willbe the concentration of A in the reactor, represented by CA’(s). d) A correct result for part c) will include a feedback loop in the block diagram, indicating the responsein T to a change in w is not…
Spur gears
Note : Exam is open notes &tables / Answer all questions.
Q.1. The press shown for Figure.1 has a rated load
of 22 kN. The twin screws have double start Acme
threads, a diameter of 50 mm, and a pitch of 6 mm.
Coefficients of friction are 0.05 for the threads and
0.08 for the collar bearings. Collar diameters are 90
mm. The gears have an efficiency of 95 percent and a
speed ratio of 60:1. A slip clutch, on the motor shaft,
prevents overloading. The full-load motor speed is
1720 rev/min.
(a) When the motor is turned on, how fast will the
press head move? (Vm= , Vser. =
)
(5M)
(b) What should be the horsepower rating of the
motor? (TR=, Tc= Pser. =
"
Bronze
bushings
Foot
Motor
Bearings
watt, Pm= watt, Pm= h.p.) (20M)
2['s
Fig.1
Worm
Collar
bearing
Chapter 3 Solutions
Fundamentals Of Thermodynamics
Ch. 3 - What is 1cal in SI units and what is the name...Ch. 3 - A car engine is rated at 110kW . What is the power...Ch. 3 - Why do we write E or E2E1 , whereas we write 1Q2...Ch. 3 - If a process in a control mass increases energy...Ch. 3 - Assume a physical setup as in Fig. P3.6(a). We now...Ch. 3 - Figure P3.6 shows three physical situations. Show...Ch. 3 - For the indicated physical setup in (a), (b), and...Ch. 3 - Assume the physical situation in Fig. P3.6b; what...Ch. 3 - Figure P3.9 shows three physical situations; show...Ch. 3 - That can you say about the beginning state of the...
Ch. 3 - A thermopane window traps some gas between the two...Ch. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - The electric bill is calculating usage in kWh....Ch. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - You heat a gas 10K at P=C . Which one in Table A.5...Ch. 3 - You mix 20C water with 50C water in an open...Ch. 3 - A piston motion moves a 25kg hammerhead vertically...Ch. 3 - A pump pushes 1000m3 of liquid water at 15C up to...Ch. 3 - A 1200kg car accelerates from zero to 100km/h over...Ch. 3 - A hydraulic hoist raises a 1750kg car 1.8m in an...Ch. 3 - Prob. 3.24PCh. 3 - A hydraulic cylinder of area 0.01m2 must push a...Ch. 3 - A hydraulic cylinder has a piston cross-sectional...Ch. 3 - A bulldozer pushes 800kg of din l00m with a force...Ch. 3 - Two hydraulic cylinders maintain a pressure of...Ch. 3 - A motor delivers 50hp on a drive shaft at 1800rpm...Ch. 3 - Solve Problem 3.24, but assume that the steam...Ch. 3 - The R4l0A in Problem 3.1 2c is at 1000kPa,50C with...Ch. 3 - A 400L tank, A (see Fig. P3.32), contains argon...Ch. 3 - A piston/cylinder assembly contains 2kg of liquid...Ch. 3 - Heat transfer to a 1.5kg block of ice at -10C...Ch. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - A piston cylinder contains 2kg of water at 20C...Ch. 3 - A nitrogen gas goes through a polytropic process...Ch. 3 - Helium gas expands from 125kPa,350K and 0.25m3 to...Ch. 3 - A balloon behaves so that the pressure is P=C2V1/3...Ch. 3 - A 15cm thick concrete wall, k=1.28W/mK , has a...Ch. 3 - The brake shoe and steel drum of a car...Ch. 3 - Prob. 3.42PCh. 3 - A power plant condenser (heat exchanger) transfers...Ch. 3 - Prob. 3.44PCh. 3 - A steel Pot, with conductivity of 15W/m and a 50mm...Ch. 3 - A wall surface on a house is 30C with an...Ch. 3 - A radiant heat lamp is a rod, tong and in diameter...Ch. 3 - A radiant beating lamp has a surface temperature...Ch. 3 - Determine the phase of the following substances...Ch. 3 - Find the phase and the missing properties of P, T,...Ch. 3 - Indicate the location of the four states in...Ch. 3 - Find the missing property of P, T, y, u, h, and x...Ch. 3 - Find the missing properties for carbon dioxide at...Ch. 3 - Find the missing property of P, T, y, u, h, and x...Ch. 3 - Saturated liquid water at 20C is compressed to a...Ch. 3 - Consider a steel bottle as a CV. It contains...Ch. 3 - A piston cylinder contains water with quality 75...Ch. 3 - Problem 3.137 and write the left-hand side...Ch. 3 - Saturated vapor R410A at 0C in a rigid tank is...Ch. 3 - A constant-pressure piston/cylinder assembly...Ch. 3 - A container is split in two equal volumes by a...Ch. 3 - A cylinder fined with a frictionless piston...Ch. 3 - A piston/cylinder contains 1.5kg of water at...Ch. 3 - Ammonia (0.5kg) in a piston cy1tnde at 200kPa,10C...Ch. 3 - A water-filled reactor with a volume of 1m3 is at...Ch. 3 - A rigid 1kg steel tank holds 0.75kg ammonia at 70C...Ch. 3 - Prob. 3.68PCh. 3 - A piston/cylinder arrangement with a linear spring...Ch. 3 - Prob. 3.70PCh. 3 - Assume the same setup as in Problem 3.66. but the...Ch. 3 - A rigid steel tank contains 0.5kgR410A at 0°C with...Ch. 3 - Redo the previous problem when you also consider...Ch. 3 - Prob. 3.74PCh. 3 - Supetheated refrigerant R-134a at 20°C and 100 kPa...Ch. 3 - In a sink, 5 L of water at 70°C is combined with 1...Ch. 3 - Prob. 3.77PCh. 3 - A copper block of volume 1 L s heat treated at...Ch. 3 - A car with mass 1275 kg is driven at 60 km h when...Ch. 3 - A piston cylinder (0.5 kg steel altogether)...Ch. 3 - An engine, shown in Fig P3.81, consists of a 100kg...Ch. 3 - Use the ideal gas air A.7 to evaluate the specific...Ch. 3 - Estimate the constant specific heats for R-134a...Ch. 3 - Find the change in u for carbon dioxide between...Ch. 3 - Nitrogen at 300 K. 3 MPa is heated to 500 K Find...Ch. 3 - Repeat Problem 3.84 for nitrogen gas.Ch. 3 - Find the change in enthalpy for carbon dioxide...Ch. 3 - Water at 20°C and 100 kPa is brought to l00 kPa...Ch. 3 - Prob. 3.89PCh. 3 - A rigid container has 2 kg of oxygen gas at l00...Ch. 3 - Air (3kg) is in a piston cylinder similar to...Ch. 3 - A 10-m-high cylinder. with a cross-sectional area...Ch. 3 - A cylinder with a piston restrained by a linear...Ch. 3 - A constant pressure container is filled with 1 kg...Ch. 3 - A spring-loaded piston cylinder contains 1.5kg of...Ch. 3 - An insulated cylinder is divided into two pans of...Ch. 3 - Helium gas expands from 125 kPa, 350 K and 0.25m3...Ch. 3 - A piston cylinder device contains 0.1 kg of air at...Ch. 3 - A gasoline engine has a piston/cylinder with 0.1...Ch. 3 - Solve the previous problem using Table A.7.Ch. 3 - A piston/cylinder has nitrogen gas at 750 K and...Ch. 3 - A piston/cylinder assembly has 1 kg of propane gas...Ch. 3 - A piston cylinder arrangement of initial volume...Ch. 3 - A piston/cylinder assembly in a car contains 0.2 L...Ch. 3 - Air goes through a polytropic process with n=1.3...Ch. 3 - Saturated vapor R410A at 10°C of mass 0.6 kg is in...Ch. 3 - A helium gas heated at constant volume from 100...Ch. 3 - A piston/cylinder shown in Fig. P3.108 contains...Ch. 3 - A piston/cylinder has water at 200 kPa, x=0.5 and...Ch. 3 - Ten kilograms of water in a piston/cylinder...Ch. 3 - Water in piston/cylinder (Fig. P3.111) is a...Ch. 3 - A setup lake the one in Fig P3.108 has the R-410A...Ch. 3 - The piston/cylinder inFig. P3.113 contains 0.1 kg...Ch. 3 - A piston/cylinder arrangement contains 5 kg of...Ch. 3 - A piston/cylinder setup similar to Problem 3.110...Ch. 3 - A piston/cylinder contains air at 1000 kPa, 800 K...Ch. 3 - Prob. 3.117PCh. 3 - A 100-hp car engine has a drive shaft rotating at...Ch. 3 - Prob. 3.119PCh. 3 - As fresh-poured concrete hardens, the chemical...Ch. 3 - A 1.2-kg pot of water at 20°C is put on a stove...Ch. 3 - A computer in a closed room of volume 200m3...Ch. 3 - A 500-W heater is used to melt 2 kg of solid ice...Ch. 3 - A 3-kg mass of nitrogen gas at 2000 K, V=C , cools...Ch. 3 - Electric power as volts times amperes (P=Vi) ....Ch. 3 - A copper wire of diameter 2 mm is 10m long and...Ch. 3 - A battery is well insulated while being charged by...Ch. 3 - A sheet of rubberis stretched out over a ring of...Ch. 3 - Assume a balloon material with a constant surface...Ch. 3 - A soap bubble has a surface tension of =3104N/cm...Ch. 3 - According to Table 3.4 residential buildings in US...Ch. 3 - total energy use in the US from Table 3.4 for 2011...Ch. 3 - A wind turbine with 20m diameter rotors spins at...Ch. 3 - Prob. 3.134PCh. 3 - A house is being designed to use a thick concrete...Ch. 3 - A solar pond with 20°C salt water, Cp=3.8kJ/kg-K...Ch. 3 - Prob. 3.137PCh. 3 - A rigidtank is divided into tworooms,both...Ch. 3 - A piston/cylinder has a water volume separated in...Ch. 3 - The cylinder volume below the constant loaded...Ch. 3 - Air in tank B is at 200 kPa, 280 K and mass 1 kg....Ch. 3 - A piston/cylinder setup (Fig P3.110) contains 1 kg...Ch. 3 - Two kilograms of water is contained in a...Ch. 3 - A piston cylinder has 0.1 kg water at x=0.5 ,...Ch. 3 - A piston/cylinder arrangement has the piston...Ch. 3 - A vertical/cylinder (Fig. P3.146) has a 61.18-kg...Ch. 3 - Water in a piston/cylinder, similar to Fig P3.110,...Ch. 3 - A rigid container has two rooms filled with water,...Ch. 3 - Prob. 3.149PCh. 3 - A piston/cylinder setup, similar to Fig. P3.143,...Ch. 3 - A spherical balloon contains 2 kg of R-410A at 0°C...Ch. 3 - Prob. 3.152PCh. 3 - Prob. 3.153EPCh. 3 - Work as Fx has units of lbf ft. What is that in...Ch. 3 - Work in the expression in Eq. 3.18 or Eq. 3.22...Ch. 3 - Prob. 3.156EPCh. 3 - Prob. 3.157EPCh. 3 - You heat a gas 20 R at P=C . Which gas in Table...Ch. 3 - A piston motion moves a 50-lbm hammerhead...Ch. 3 - A pump pushes 35000ft3 of liquid water at 60 F up...Ch. 3 - Prob. 3.161EPCh. 3 - Prob. 3.162EPCh. 3 - Prob. 3.163EPCh. 3 - A car with tires of outer radius 12 in. drives...Ch. 3 - The R-410A in Problem 3.9(c) is at 150 psia, 120 F...Ch. 3 - Prob. 3.166EPCh. 3 - A nitrogen gas goes through apolytropic process...Ch. 3 - Find the rate of conduction heat transfer per unit...Ch. 3 - The sun shines on a 1500-ft2 road surface so that...Ch. 3 - Find the missing properties and give the phase of...Ch. 3 - Find the missing properties among (P,T,v,u,h)...Ch. 3 - Find the missing properties among (P,T,v,u,h)...Ch. 3 - Saturated vapor R-410A at 60 F in a rigid tank is...Ch. 3 - A containeris split in two equal volumes by a...Ch. 3 - Saturated vapor R-410A at 200 psia in a...Ch. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - Prob. 3.177EPCh. 3 - A water-filled reactor with a volume of 50ft3 is...Ch. 3 - Prob. 3.179EPCh. 3 - A piston/cylinder arrangement with a linear spring...Ch. 3 - Prob. 3.181EPCh. 3 - Prob. 3.182EPCh. 3 - Prob. 3.183EPCh. 3 - Prob. 3.184EPCh. 3 - Prob. 3.185EPCh. 3 - A closed rigid container is filled with 3 lbm...Ch. 3 - An insulated cylinder is divided into two parts of...Ch. 3 - Helium gas expands from 20 psia, 600 R, and 9ft3...Ch. 3 - Prob. 3.189EPCh. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - Prob. 3.191EPCh. 3 - A piston/cylinder contains air at 150 psia, 1400 R...Ch. 3 - A piston/cylinder has 2 lbm of R-134a at state 1...Ch. 3 - A force of 300 lbf moves a truck at a speed of 40...Ch. 3 - Prob. 3.195EPCh. 3 - Water is in a piston/cylinder maintaining constant...Ch. 3 - A mass of 6 lbm nitrogen gas at 3600 R, V=C ,...Ch. 3 - Prob. 3.198EPCh. 3 - Ammonia is contained in a sealed, rigid tank at 30...Ch. 3 - Water in a piston/cylinder, similar to Fig....
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the reactions at the fixed support A and the roller B. EI is constant.
Mechanics of Materials (10th Edition)
1‘21 Same as Problem 1.20, excepi the anicle should be
on safety as related to su rveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Calories from Fat and Carbohydrates A nutritionist who works for a fitness club helps members by evaluating the...
Starting Out with Python (4th Edition)
ICA 8-36
A 10-liter [L] flask contains 1.3 moles [mol] of an ideal gas at a temperature of 20 degrees Celsius [...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
Explain why overloaded prefix and postfix ++ and operator functions should return a value.
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forwardAn aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forward
- Problem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forward
- Problem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forwardB5 Please help on the attached question.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license