
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.128P
(a)
To determine
The expression for the conduction heat flux at the surface.
(b)
To determine
The expression for the convection heat flux at the surface for the x-location.
(c)
To determine
The criterion for establishing the validity of the one dimensional assumption used to model an extended surface.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
8 mm-
Top view
-200 mm-180 mm-
D
B
B
12 mm
Side view
B
-8 mm
D
PROBLEM 1.56
In an alternative design for the structure of
Prob. 1.55, a pin of 10-mm-diameter is to be
used at A. Assuming that all other
specifications remain unchanged, determine
the allowable load P if an overall factor of
safety of 3.0 is desired.
PROBLEM 1.55 In the structure shown, an 8-
mm-diameter pin is used at A, and 12-mm-
diameter pins are used at B and D. Knowing
that the ultimate shearing stress is 100 MPa at
all connections and that the ultimate normal
stress is 250 MPa in each of the two links
joining B and D, determine the allowable load
P if an overall factor of safety of 3.0 is desired.
20 mm
P
8 mm-
12 mm-
Front view
Where on the beam below is the Maximum Deflection likely to occur?
2P
A
"ती
Point A
Point B
Point C
Point D
Point B or Point D
८
B
प
Sign in
||!
PDE 321 proje X
IMB321
PDF Lecture 5 X PDF Planet Ec X
PDF
Planet Ec X
PDF PEABWX
PDF meeting x
PDF
GSS Quo X
PDF
File C:/Users/KHULEKANI/Downloads/CIVE%20281%20Ass-2.pdf
Draw
| | All | a | Ask Copilot
+
1
of 7
| D
SOLUTION
B
PROBLEM 12.16
Block 4 has a mass of 40 kg, and block B has a mass of 8 kg. The
coefficients of friction between all surfaces of contact are μ, = 0.20
H = 0.15. Knowing that P = 50 N→, determine (a) the acceleration of
block B, (b) the tension in the cord.
Constraint of cable: 2x + (x-x1) = x + x = constant.
a+ag = 0,
or
aB = -a
Assume that block A moves down and block B moves up.
Block B: +/ΣF, = 0: NAB - WB cos 0 = 0
=ma: -T+μN + Wsin
=
We as
g
+ ΣΕ
We
Eliminate NAB and
aB-
NAB
B
Nas
HN
UNA
A
NA
-T+W(sin+μcоsе) = WB-
g
VD"M-
g
Block A: +/ΣF, = 0: NA-NAB - W₁cos + Psinė = 0
N₁ = N AB+W cose - Psin
=
(WB+WA)cose - Psinė
ΣF=ma -T+Wsino-FAB-F + Pcos =
CIVE 281 X
+
Ждал
g
Q |
го
||
حالم
☑
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Where on the below beam is the Maxiumum Slope likely to occur? 120 Point A Point B Point C Point B or Point C B сarrow_forwardA very thin metallic sheet is placed between two wood plates of different thicknesses. Theplates are firmly pressed together and electricity is passed through the sheet. The exposed surfaces ofthe two plates lose heat to the ambient fluid by convection. Assume uniform heating at the interface.Neglect end effects and assume steady state.[a] Will the heat transfer through the two plates be the same? Explain.[b] Will the exposed surfaces be at the same temperature? Explainarrow_forwardDesign consideration requires that the surface of a small electronic package be maintained at atemperature not to exceed 82 o C. Noise constraints rule out the use of fans. The power dissipated inthe package is 35 watts and the surface area is 520 cm2 . The ambient temperature and surroundingwalls are assumed to be at 24 o C. The heat transfer coefficient is estimated to be 9.2 W/m2- oC andsurface emissivity is 0.7. Will the package dissipate the required power without violating designconstraints?arrow_forward
- Consider radiation from a small surface at 100 oC which is enclosed by a much larger surface at24 o C. Determine the percent increase in the radiation heat transfer if the temperature of the smallsurface is doubled.arrow_forwardA small electronic package with a surface area of 820 cm2 is placed in a room where the airtemperature is 28 o C. The heat transfer coefficient is 7.3 W/m2 - o C. You are asked to determine if it isjustified to neglect heat loss from the package by radiation. Assume a uniform surface temperature of78 o C and surface emissivity of 0.65 Assume further that room’s walls and ceiling are at a uniformtemperature of 16 o C.arrow_forwardA hollow metal sphere of outer radius or = 2 cm is heated internally with a variable output electricheater. The sphere loses heat from its surface by convection and radiation. The heat transfercoefficient is 22 W/ m2 - o C and surface emissivity is 0.92. The ambient fluid temperature is 20 o C andthe surroundings temperature is 14 oC. Construct a graph of the surface temperature corresponding toheating rates ranging from zero to 100 watts. Assume steady state. Use a simplified model forradiation exchange based on a small gray surface enclosed by a much larger surface at 14 o C.arrow_forward
- 2. A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). Dashed line indicates - corner of original stock Intended toolpath-tangent - arc entry and exit sized to programmer's judgment 026022 (Slot and Drill Part) (Setup Instructions. (UNITS: Inches (WORKPIECE MAT'L: SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location G54: ( XY 0.0 Upper Left of Fixture ( TOP OF PART 2-0 (Tool List: ) ( T04 T02 0.500 IN 4 FLUTE FLAT END MILL) #4 CENTER DRILL ' T02 0.500 TWIST DRILL N010 GOO G90 G17 G20 G49 G40 G80 G54 N020 M06 T02 (0.5 IN 4-FLUTE END MILL) R0.750 N030 S760 M03 G00 x N040 043 H02 2 Y (P1) (RAPID DOWN -TLO) P4 NO50 MOB (COOLANT ON) N060 G01 X R1.000 N070…arrow_forward6–95. The reaction of the ballast on the railway tie can be assumed uniformly distributed over its length as shown. If the wood has an allowable bending stress of σallow=1.5 ksi, determine the required minimum thickness t of the rectangular cross section of the tie to the nearest 18 in. Please include all steps. Also if you can, please explain how you found Mmax using an equation rather than using just the moment diagram. Thank you!arrow_forward6–53. If the moment acting on the cross section is M=600 N⋅m, determine the resultant force the bending stress produces on the top board. Please explain each step. Please explain how you got the numbers and where you plugged them in to solve the problem. Thank you!arrow_forward
- Solving coplanar forcesarrow_forwardComplete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 7118 Zero reference point 1.0005 1.0000 1.252 Bore C' bore 1.250 6.0000 .7118 0.2180 deep (3 holes) 2.6563 1.9445 3.000 diam. slot 0.3000 deep. 0.3000 wide 2.6563 1.9445arrow_forwardComplete the following problems. Show your work/calculations, save as.pdf and upload to the assignment in Blackboard. missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill). 1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in Figure 26.2 (below)? 6.0000 Zero reference point 7118 1.0005 1.0000 1.252 Bore 6.0000 .7118 Cbore 0.2180 deep (3 holes) 2.6563 1.9445 Figure 26.2 026022 (8lot and Drill Part) (Setup Instructions--- (UNITS: Inches (WORKPIECE NAT'L SAE 1020 STEEL (Workpiece: 3.25 x 2.00 x0.75 in. Plate (PRZ Location 054: ' XY 0.0 - Upper Left of Fixture TOP OF PART 2-0 (Tool List ( T02 0.500 IN 4 FLUTE FLAT END MILL #4 CENTER DRILL Dashed line indicates- corner of original stock ( T04 T02 3.000 diam. slot 0.3000 deep. 0.3000 wide Intended toolpath-tangent- arc entry and exit sized to programmer's judgment…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license