Concept explainers
(a)
Interpretation:
A balanced chemical equation for a reaction between hydrogen sulphide and oxygen to form sulphur dioxide and water vapour is to be written.
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the
Step 4: In a balanced
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the
(b)
Interpretation:
A balanced chemical equation for a reaction when potassium chlorate is heated forming potassium chloride and potassium perchlorate is to be written.
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.
(c)
Interpretation:
A balanced chemical equation for a reaction between hydrogen gas and
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.
(d)
Interpretation:
The chemical equation for the combustion reaction of gaseous ethane to form carbon dioxide and water vapor is to be balanced.
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total
mass of reactants and products are equal in a balanced chemical equation.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.
(e)
Interpretation:
The chemical equation for the reaction when
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total
mass of reactants and products are equal in a balanced chemical equation.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element/elements such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjust the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry The Molecular Nature Of Matter And Change 9th
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardDraw and show the full mechanism of how the molecule ((1E, 3E, 5E)-1-methoxyhepta-1,3,5-triene) is built using substitution and elimination reactions. You can start with an alkane of any carbon length with any number of leaving groups attached or with a alkoxide of any carbon length (conjugate base of an alcohol). Show each step and and explanation for each reaction. Also include why the reagents and solvents were picked and what other products can be expected.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY