Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 26RQ
To determine
The means of describing or quantifying the grain size of a solid metal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Briefly explain the ASTM grain-size standard
What physical reasons why reducing grain size is an effective alternative for increasing the strength of a metal?
During heat treatment of metals, after the recovery phase, the next two stages include the following behaviours:
Chapter 3 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 3 - What enables us to control the properties and...Ch. 3 - Â What are the next levels of structure that are...Ch. 3 - Prob. 3RQCh. 3 - Prob. 4RQCh. 3 - Prob. 5RQCh. 3 - Prob. 6RQCh. 3 - What are the three types of primary bonds, and...Ch. 3 - What are some general characteristics of...Ch. 3 - Prob. 9RQCh. 3 - Prob. 10RQ
Ch. 3 - Prob. 11RQCh. 3 - Prob. 12RQCh. 3 - Prob. 13RQCh. 3 - What are some unique property features of...Ch. 3 - Prob. 15RQCh. 3 - Prob. 16RQCh. 3 - Prob. 17RQCh. 3 - What are some of the general characteristics of...Ch. 3 - Prob. 19RQCh. 3 - Prob. 20RQCh. 3 - Prob. 21RQCh. 3 - Prob. 22RQCh. 3 - Prob. 23RQCh. 3 - Prob. 24RQCh. 3 - What is a grain? A grain boundary?Ch. 3 - Prob. 26RQCh. 3 - What is implied by a low ASTM grain�size number?...Ch. 3 - Prob. 28RQCh. 3 - What is Poissons ratio, and under what conditions...Ch. 3 - What is plastic deformation?Ch. 3 - Why do metals retain their strength during plastic...Ch. 3 - Prob. 32RQCh. 3 - Prob. 33RQCh. 3 - What is a dislocation? Using the carpet analogy,...Ch. 3 - What is the difference between an edge dislocation...Ch. 3 - What are some of the common barriers to...Ch. 3 - Prob. 37RQCh. 3 - What is the mechanism (or mechanisms) responsible...Ch. 3 - Why is a fine grain size often desired in an...Ch. 3 - What is an anisotropic property? Why might...Ch. 3 - What is the difference between brittle fracture...Ch. 3 - How does a metal increase its internal energy...Ch. 3 - What is required in order to drive the...Ch. 3 - How might the lowest recrystallization temperature...Ch. 3 - In what ways can recrystallization be used to...Ch. 3 - What is the major distinguishing feature between...Ch. 3 - What is warm working?Ch. 3 - How can deformation and recrystallization improve...Ch. 3 - Why is grain growth usually undesirable?Ch. 3 - Prob. 50RQCh. 3 - As a result of their ionic or covalent bonding,...Ch. 3 - Prob. 52RQCh. 3 - Prob. 53RQCh. 3 - What is the difference between an intrinsic...Ch. 3 - What is required for electrical conductivity in...Ch. 3 - What is required for electrical conductivity in...Ch. 3 - Brass is an alloy of copper with a certain amount...Ch. 3 - It is not uncommon for processing operations to...Ch. 3 - Polyethylene consists of fibrous molecules of...Ch. 3 - Prob. 5P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The following is a schematic micrograph that represents the microstructure of some hypothetical metal. 100 μη Determine the following: (a) Mean intercept length (b) ASTM grain size number, Garrow_forwardPlease provide a detailed solution. Explanation required for the formula used.arrow_forwardFor an ASTM grain size of 5, approximately how many grains would there be per square inch (a) at a magnification of 100? N = i (b) without any magnification? N = i grains/in.² grains/in.²arrow_forward
- When a cold-worked metal is heat-treated below its melting point over a period of time, which of the following phenomena occur? (This question has more than one correct answer) a. Strength is increased b. Dislocation density decreases c. Grain size increases d. Internal lattice strains decrease e. Ductility is reducedarrow_forwardPlease show all the work. Material science question, Don't use chatgpt for this question.arrow_forwardIn class I mentioned that an FCC metal should be strongest in uniaxial tension when pulledalong a <111> type direction. Assuming only the preferred {111}/<110> slip systems can beactivated, use the Schmid factor ( cosφ cosλ ) to compare strength in tension along the [100],[211], and [111] directions in an FCC metal. For your final answer, complete the statement,"An FCC metal will be ___% and ___% stronger under tension in the [111] direction comparedto the [100] and [211] directions, respectively.arrow_forward
- Microstructure plays a significant role in YS, TS, ductility, thermal conductivity and electrical conductivity which of the following elements would be considered part of the microstructure? O grain shape O All of the answers dislocations O grain size O porosityarrow_forwardConsider the tensile stress-strain diagram in the figure below labeled 1 and 2.arrow_forwardAccording to Hall-Petch equation, the 1 point decreasing in grain size causes strengthening of metals * True Falsearrow_forward
- Solve it pls.arrow_forwardYou are given three metal test samples, with the same chemical composition and differing grain sizes: A: 5.0, B: 10.0 and C: 20.0 microns. Samples A and B have been tested and have yield stresses of 142.4 MPa and 135.8 MPa (all numbers are rounded off to the 1st decimal point). Based on this information, which of the following values do you think will be the closest to the yield stress of Sample C? In calculating the answer, use the Hall-Petch relation between yield stress of a metal o vield and the grain size of the metal d, which is Oyield = 00 + kd¬1/2 where k and og are constants. (This question has only one correct answer) а. 100.6 MPa b. 131.1 MPa С. 152.4 MPa O d. 115.8 MPa е. 128.1 MPaarrow_forwardYou are given three metal test samples, with the same chemical composition and differing grain sizes: A: 5.0, B: 10.0 and C: 20.0 microns. Samples A and B have been tested and have yield stresses of 142.4 MPa and 135.8 MPa (all numbers are rounded off to the 1st decimal point). Based on this information, which of the following values do you think will be the closest to the yield stress of Sample C? In calculating the answer, use the Hall-Petch relation between yield stress of a metal ovield and the grain size of the metal d, which is Oyield = 00 + kd¯1/2 where k and og are constants. (This question has only one correct answer) a. 128.1 MPa O b. 115.8 MPa О с. 100.6 MPa O d. 131.1 MPa Ое. 152.4 MPaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY