
Primary Key:
A Primary Key in a
Example:
Students in Universities are assigned a unique registration number.
Therefore, in a STUDENT database table, the attribute “reg_no” acts as primary key.
Foreign Key:
Foreign Key is a column in a relational database table which provides a relation between two tables. It provides a cross reference between tables by pointing to primary key of another table.
Example:
In STUDENT database table, the attribute “reg_no” acts as primary key and in COURSE database table in which the student selects his or her course, the same “reg_no” acts as foreign key for the STUDENT table.
Many to One Relationship:
When more than one record in a database table is associated with only one record in another table, the relationship between the two tables is referred as many to one relationship. It is also represented as M: 1 relationship.
One to Many Relationship:
When one record in a database table is associated with more than one record in another table, the relationship between the two tables is referred as one to many relationship. It is also represented as1: M relationship. This is the opposite of many to one relationship.
One to One Relationship:
When one record in a database table is associated with one record in another table, the relationship between the two tables is referred as one to one relationship. It is also represented as1: 1relationship.
RELATIONAL DIAGRAM:
Relational Diagram is also known as Entity Relational Diagram. It is used to define the conceptual view of the database as viewed by the end user. It is used to depict the database’s main components: entities, relationships and attributes. It describes how data is related to each other.

Explanation of Solution
Given database tables:
Table Name: CHARTER
CHAR_TRIP | CHAR_DATE | CHAR_PILOT | CHAR_COPILOT | AC_NUMBER | CHAR_DESTINATION | CHAR_DISTANCE | CHAR_HOURS_FLOWN | CHA_HOURS_WAIT | CHAR_FUEL_GALLONS | CHAR_OIL_QTS | CUS_CODE |
10001 | 05-Feb-18 | 104 | 2289L | ATL | 936.0 | 5.1 | 2.2 | 354.1 | 1 | 10011 | |
10002 | 05-Feb-18 | 101 | 2778V | BNA | 320.0 | 1.6 | 0.0 | 72.6 | 0 | 10016 | |
10003 | 05-Feb-18 | 105 | 109 | 4278Y | GNV | 1574.0 | 7.8 | 0.0 | 339.8 | 2 | 10014 |
10004 | 06-Feb-18 | 106 | 1484P | STL | 472.0 | 2.9 | 4.9 | 97.2 | 1 | 10019 | |
10005 | 06-Feb-18 | 101 | 2289L | ATL | 1023.0 | 5.7 | 3.5 | 397.7 | 2 | 10011 | |
10006 | 06-Feb-18 | 109 | 4278Y | STL | 472.0 | 2.6 | 5.2 | 117.1 | 0 | 10017 | |
10007 | 06-Feb-18 | 104 | 105 | 2778V | GNV | 1574.0 | 7.9 | 0.0 | 348.4 | 2 | 10012 |
10008 | 07-Feb-18 | 106 | 1484P | TYS | 644.0 | 4.1 | 0.0 | 140.6 | 1 | 10014 | |
10009 | 07-Feb-18 | 105 | 2289L | GNV | 1574.0 | 6.6 | 23.4 | 459.9 | 0 | 10017 | |
10010 | 07-Feb-18 | 109 | 4278Y | ATL | 998.0 | 6.2 | 3.2 | 279.7 | 0 | 10016 | |
10011 | 07-Feb-18 | 101 | 104 | 1484P | BNA | 352.0 | 1.9 | 5.3 | 66.4 | 1 | 10012 |
10012 | 08-Feb-18 | 101 | 2289L | MOB | 884.0 | 4.8 | 4.2 | 215.1 | 0 | 10010 | |
10013 | 08-Feb-18 | 105 | 4278Y | TYS | 644.0 | 3.9 | 4.5 | 174.3 | 1 | 10011 | |
10014 | 09-Feb-18 | 106 | 4278V | ATL | 936.0 | 6.1 | 2.1 | 302.6 | 0 | 10017 | |
10015 | 09-Feb-18 | 104 | 101 | 2289L | GNV | 1645.0 | 6.7 | 0.0 | 459.5 | 2 | 10016 |
10016 | 09-Feb-18 | 109 | 105 | 2778V | MQY | 312.0 | 1.5 | 0.0 | 67.2 | 0 | 10011 |
10017 | 10-Feb-18 | 101 | 1484P | STL | 508.0 | 3.1 | 0.0 | 105.5 | 0 | 10014 | |
10018 | 10-Feb-18 | 105 | 104 | 4278Y | TYS | 644.0 | 3.8 | 4.5 | 167.4 | 0 | 10017 |
Table Name: AIRCRAFT
AC_NUMBER | MODE-CODE | AC_TTAF | AC_TTEL | AC_TTER |
1484P | PA23-250 | 1833.1 | 1833.1 | 101.8 |
2289L | C-90A | 4243.8 | 768.9 | 1123.4 |
2778V | PA31-350 | 7992.9 | 1513.1 | 789.5 |
4278Y | PA31-350 | 2147.3 | 622.1 | 243.2 |
Table Name: MODEL
MOD_CODE | MOD_MANUFACTER | MOD_NAME | MOD_SEATS | MOD_CHG_MILE |
B200 | Beechcraft | Super KingAir | 10 | 1.93 |
C-90A | Beechcraft | KingAir | 8 | 2.67 |
PA23-250 | Piper | Aztec | 6 | 1.93 |
PA31-350 | Piper | Navajao Chiettan | 10 | 2.35 |
Table Name: PILOT
EMP_NUM | PIL_LICENSE | PIL_RATINGS | PIL_MED_TYPE | PIL_MED_DATE | PIL_PTI35_DATE |
101 | ATP | ATP/SEL/MEL/Instr/CFII | 1 | 20-Jan-18 | 11-Jan-18 |
104 | ATP | ATP/SEL/MEL/Instr | 1 | 18-Dec-17 | 17-Jan-18 |
105 | COM | COMM/SEL/MEL/Instr/CFI | 2 | 05-Jan-18 | 02-Jan-18 |
106 | COM | COMM/SEL/MEL/Instr | 2 | 10-Dec-17 | 02-Feb-18 |
109 | COM | ATP/SEL/MEL/SES/Instr/CFII | 1 | 22-Jan-18 | 15-Jan-18 |
Table Name: EMPLOYEE
EMP_NUM | EMP_TITLE | EMP-LNAME | EMP_FNAME | EMP_INITIAL | EMP_CODE | EMP_HIRE_DATE |
100 | Mr. | Kolrnycz | George | D | 15-Jun-62 | 15-Mar-08 |
101 | Ms. | Lewis | Rhonda | G | 19-Mar-85 | 25-Apr-06 |
102 | Mr. | Vandam | Rhett | 14-Nov-78 | 18-May-13 | |
103 | Ms. | Jones | Anne | M | 11-May-94 | 26-Jul-17 |
104 | Mr. | Lange | John | P | 12-Jul-91 | 20-Aug-10 |
105 | Mr. | Williams | Robert | D | 14-Mar-95 | 19-Jun-17 |
106 | Mrs. | Duzak | Jeanine | K | 12-Feb-88 | 13-Mar-18 |
107 | Mr. | Deante | George | D | 01-May-95 | 02-Jul-16 |
108 | Mr. | Wiesanbach | Paul | R | 14-Feb-86 | 03-Jun-13 |
109 | Ms. | Travis | Elizabeth | K | 18-Jun-81 | 14-Feb-16 |
110 | Mrs. | Genkazi | Lieghla | W | 19-May-90 | 29-Jun-10 |
Table Name: EMPLOYEE
CUS_CODE | CUS_LNAME | CUS_FNAME | CUS_INITIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE |
10010 | Ramas | Alfred | A | 615 | 844-2573 | 0.00 |
10011 | Dunne | Leona | K | 713 | 894-1293 | 0.00 |
10012 | Smith | Kathy | W | 615 | 894-2285 | 896.54 |
10013 | Owolski | Paul | F | 615 | 894-2180 | 1285.19 |
10014 | Orlando | Myron | 615 | 222-1672 | 673.21 | |
10015 | OBrian | Amy | B | 713 | 442-3381 | 1014.86 |
10016 | Brown | James | G | 615 | 297-1228 | 0.00 |
10017 | Williams | George | 615 | 290-2556 | 0.00 | |
10018 | Fariss | Anne | G | 713 | 382-7185 | 0.00 |
10019 | Smith | Olette | K | 615 | 297-3809 | 453.98 |
PRIMARY KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_TRIP
“CHAR_TRIP” acts as primary key of the table because the attribute “CHAR_TRIP” is a unique ID that is assigned to every individual trip by the charter plane. It also uniquely identifies every other row present in the database table.
For Table Name: AIRCRAFT:
Primary Key: AC_NUMBER
“AC_NUMBER” acts as primary key of the table because the attribute “AC_NUMBER” is a unique number that is assigned to every individual charter plane and is used to distinguish among them. It also uniquely identifies every other row present in the database table.
For Table Name: MODEL:
Primary Key: MOD_CODE
“MOD_CODE” acts as primary key of the table because the attribute “MOC_CODE” is a unique number that is assigned to every individual model of the charter plane and is used to distinguish models among them. It also uniquely identifies every other row present in the database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number that is assigned to every pilot that flies an aircraft. It also uniquely identifies every other row present in the database table.
For Table Name: EMPLOYEE:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number or ID that is assigned to every employee that works in the airline. It also uniquely identifies every other row present in the database table.
For Table Name: CUSTOMER:
Primary Key: CUS_CODE
“CUS_CODE” acts as primary key of the table because the attribute “CUS_CODE” is a unique code that is assigned to every customer that books a flight with the airline. It also uniquely identifies every other row present in the database table.
FOREIGN KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_PILOT,CHAR_COPILOT,AC_NUMBER,CUS_CODE
“CHAR_PILOT” acts as foreign key of the table because the attribute “CHAR_PILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“CHAR_COPILOT” acts as foreign key of the table because the attribute “CHAR_COPILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“AC_NUMBER” acts as foreign key of the table because the attribute “AC_NUMBER” is also present in the table AIRCRAFT and it references AIRCRAFT and hence it forms a link between the two tables.
“CUS_CODE” acts as foreign key of the table because the attribute “CUS_CODE” is also present in the table CUSTOMER and it references CUSTOMER and hence it forms a link between the two tables.
For Table Name: AIRCRAFT:
Foreign Key: MOD_CODE
“MOD_CODE” acts as foreign key of the table because the attribute “MOD_CODE” is also present in the table MODEL and it references MODEL and hence it forms a link between the two tables.
“For Table Name: MODEL:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as foreign key of the table because the attribute “EMP_NUM” is also present in the table EMPLOYEE and it references EMPLOYEE and hence it forms a link between the two tables.
For Table Name: EMPLOYEE:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: CUSTOMER:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
Relationship among the tables:
A CUSTOMER requests many CHARTER trips and more than one CHARTER trip can be requested by a single customer. Hence, the relationship between CUSTOMER and CHARTER is one to many or 1: M.
An AIRCRAFT can fly many CHARTER trips but that each CHARTER trip is flown by one AIRCRAFT. Hence, the relationship between AIRCRAFT and CHARTER is one to many or 1: M.
Each AIRCRAFT references a single MODEL but a MODEL references many AIRCRAFT. Hence, the relationship between AIRCRAFT and MODEL is many to one or M: 1.
Many CHARTER trips are flown by a single PILOT and with a single COPILOT but a PILOT can fly only one charter trip at a time. Hence, the relationship between CHARTER and PILOT is many to one or M: 1.
All PILOTS are EMPLOYEES, but not all EMPLOYEES are PILOTS – some are
There is an optional (default) 1:1 relationship between EMPLOYEE and PILOT. It can be represented that EMPLOYEE is the “parent” of PILOT.
Relational Diagram to represent relationship between CHARTER, MODEL, AIRCRAFT, PILOT, EMPLOYEE and CUSTOMER:
The Relational Diagram to represent relationship between CHARTER, MODEL, AIRCRAFT, PILOT, EMPLOYEE and CUSTOMER is shown below:
The above relational diagram represents the one to many relationship between CUSTOMER represented as “1” and CHARTER represented as “∞”, one to many relationship between AIRCRAFT represented as “1” and CHARTER represented as “∞” , many to one relationship between AIRCRAFT represented as “∞” and MODEL represented as “1” , many to one relation between CHARTER represented as “∞” and PILOT represented as “1” and an optional one to one relationship between PILOT represented as “1” and EMPLOYEE represented as “1”. A new entity PILOT_1 table is created to split the PILOT table and represent the many to one relationship between CHARTER represented as “∞” and PILOT_1 represented as “1”.
Want to see more full solutions like this?
Chapter 3 Solutions
Database Systems: Design, Implementation, & Management
- Answer the Java OOP question below: Explain the relationship between a superclass and a subclass. How do the principles of encapsulation and abstraction play a role in this relationship? In your experience, how do you decide what should be included in a superclass versus a subclass? Share an example where a well-defined superclass-subclass hierarchy improved your code.arrow_forward1.) Consider the problem of determining whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable. ii) Let ALLDFA = {(A)| A is a DFA and L(A) = "}. Show that ALLDFA is decidable. iii) Let AECFG = {(G)| G is a CFG that generates &}. Show that AECFG is decidable. iv) Let ETM {(M)| M is a TM and L(M) = 0}. Show that ETM, the complement of Erm, is Turing-recognizable. Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10). We describe the functions f: XY and g: XY in the following tables. Answer each part and give a reason for each negative answer. n f(n) n g(n) 1 6 1 10 2 7 2 9 3 6 3 8 4 7 4 7 5 6 5 6 Aa. Is f one-to-one? b. Is fonto? c. Is fa correspondence? Ad. Is g one-to-one? e. Is g onto? f. Is g a correspondence? vi) Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable using a proof by diagonalization.arrow_forwardCan you find the least amount of different numbers to pick from positive numbers (integers) that are at most 100 to confirm two numbers that add up to 101 when each number can be picked at most two times?arrow_forward
- Can you find the formula for an that satisfies the provided recursive definition? Please show all steps and justificationarrow_forwardWhat is the number of injective functions f from set {1,2,....,2n} to set {1,2,....,2n} so that f(x) >= x for all the 1<= x <= n?arrow_forwardIdeal MOSFET Current–Voltage Characteristics—NMOS Device and draw the circuitarrow_forward
- 1. Create a Person.java file. Implement the public Person and Student classes in Person.java, including all the variables and methods in the UMLS. Person -name: String -street: String -city: String +Person(String name, String, street, String, city) +getName(): String +setName(String name): void +getStreet(): String +setStreet(String street): void +getCity(): String +setCity(String City): void +toString(): String Student -Id: int +Person(String name, String, street, String, city, int Id) +getId(): int +setId(int Id): void +toString(): String 2. Create a StudentTest.java file. Implement a public StudentTest class with a main method. In the main method, create one student object and print the object using System.out.println(). Your printing result must follow the example output: name: Mike, street: Morris Ave, city: Union, Id: 1000 Hint: You need to modify the toString methods in the Student class and Person class!arrow_forward1) Apply the Paint Blue algorithm discussed in class to the following Finite Automata. a a a b b a COIS-3050H-R-W01-2025WI-COMB Formal Languages & Automata a b Show the status of the Finite Automata at the conclusion of the Paint Blue Algorithm (mark the visited states with an X and only include edges that have not been followed). 2) Use the pumping lemma to prove the following language is nonregular: L= {ab} = {abbb, aabbbbbb, aaabbbbbbbbb, ...}arrow_forward3) Find CFGs that for these regular languages over the alphabet Σ= {a, b}. Draw a Finite Automata e CFG. 1 COIS-3050H-R-W01-2025WI-COMB Formal anguages & Automata Is that contain the substring aba. (b) The language of all words that have an odd number letters and contains the string bb. (c) The language of all words that begin with the substring ba and contains an odd number of letters. 4) Convert the following FA into a PDA. a a S± b a a Ν Ꮓarrow_forward
- COIS-3050H-R-W01-2025WI-COMB Formal ministic PDA. Are the following words accepted by this Languages & Automata UI MIUSɩ that aTU I ed, indicate which state the PDA is in when the crash occurs. (a) aabbaa (b) aaabab (c) bababa Start (d) aaaabb A Accept Read₁ Push a (e) aaaaaa a b Read, Popi a a,b A Read₂ Accept A Pop₂arrow_forward5) Eliminate the A-productions from the following CFG: Abc COIS-3050H-R-W01-2025WI-COMB Formal Languages & Automata BAabC C CaA | Bc | A 6) Convert the following CFG into CNF. S→ XYZ XaXbS | a |A YSbS | X | bb Z→ barrow_forwardNeed help answering these questions!1. Design a While loop that lets the user enter a number. The number should be multiplied by 10, and the result stored in a variable named product. The loop should iterate as long as the product contains a value less than 100. 2. Design a For loop that displays the following set of numbers: 0, 10, 20, 30, 40, 50 . . . 1000 3. Convert the While loop in the following code to a Do-While loop: Declare Integer x = 1 While x > 0 Display "Enter a number." Input x End Whilearrow_forward
- Database Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781305627482Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781285196145Author:Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos CoronelPublisher:Cengage Learning
- A Guide to SQLComputer ScienceISBN:9781111527273Author:Philip J. PrattPublisher:Course Technology Ptr



