Concept explainers
The estimated times and immediate predecessors for the activities in a project at George Kyparis’s retinal scanning company are given in the following table. Assume that the activity times are independent.
a) Calculate the expected time and variance for each activity.
b) What is the expected completion time of the critical path? What is the expected completion time of the other path in the network?
c) What is the variance of the critical path? What is the variance of the other path in the network?
d) If the time to complete path A–C is
e) If the time to complete path B–D is normally distributed, what is the probability that this path will be finished in 22 weeks or less?
f) Explain why the probability that the critical path will be finished in 22 weeks or less is not necessarily the probability that the project will be finished in 22 weeks or less.
a)
To determine: The expected time and variance.
Introduction:
The activity times of various tasks in a PERT project network are assumed to follow a probability distribution. For calculating the expected times and standard deviation, the parameters required are the following:
- Optimistic time: This is the time denoted by “a”, which is the best possible or in other words, the quickest time in which an activity can be completed, assuming that everything goes as per plan.
- Pessimistic time: This is the worst case scenario, where all the conditions are adverse or unfavorable. The maximum time which may be taken in such a situation is the pessimistic time denoted by “b”.
- Most likely time: The most realistic estimate of the time, denoted by “m” in normal conditions, is another parameter which is important in the computation of expected times and variances.
Answer to Problem 20P
The expected times and varianceare shown in Table 1.
Explanation of Solution
Given information:
Activity | Immediate predecessor | Time in weeks | ||
a | m | b | ||
A | 9 | 10 | 11 | |
B | 4 | 10 | 16 | |
C | A | 9 | 10 | 11 |
D | B | 5 | 8 | 11 |
Formula:
Calculate the expected time t and the variances for each activity by using the equations
where ‘a’ is the optimistic time, ‘m’ is the most likely time and ‘b’ is the most pessimistic time.
Calculation of expected time and variance:
The calculations are shown below.
Activity | Immediate predecessor | Time in weeks | t | Variance | ||
a | m | b | ||||
A | 9 | 10 | 11 | 10 | 0.11 | |
B | 4 | 10 | 16 | 10 | 4 | |
C | A | 9 | 10 | 11 | 10 | 0.11 |
D | B | 5 | 8 | 11 | 8 | 1 |
Table 1
Excel worksheet:
Hence, the expected times and variance are shown in Table 1.
b)
To determine: The expected completion of critical path and other path (non-ciritical paths).
Answer to Problem 20P
The critical path is AàC and its expected completion time is 20 weeks. The expected completion time of the other path BàD is 18 weeks.
Explanation of Solution
Given information:
Activity | Immediate predecessor | Time in weeks | ||
a | m | b | ||
A | 9 | 10 | 11 | |
B | 4 | 10 | 16 | |
C | A | 9 | 10 | 11 |
D | B | 5 | 8 | 11 |
Calculation of expected completion of critical path and other path (non-ciritical paths):
AON diagram is constructed which is shown below.
The critical path is AàC and expected completion time is 20 weeks. The expected completion time of the other path BàD is 18 weeks.
Hence, the critical path is AàC and its expected completion time is 20 weeks. The expected completion time of the other path BàD is 18 weeks.
c)
To determine: The variance of critical path and other path (non-ciritical paths).
Answer to Problem 20P
The variance of the critical path AàC is 0.222 weeks and other path BàD is5 weeks.
Explanation of Solution
Given information:
Activity | Immediate predecessor | Time in weeks | ||
a | m | b | ||
A | 9 | 10 | 11 | |
B | 4 | 10 | 16 | |
C | A | 9 | 10 | 11 |
D | B | 5 | 8 | 11 |
Calculation of variance of critical path and other path:
The variance of the critical path AàC is the sum of the variances of activities A and C.
The variance of the critical path is the sum of 0.1111 and 0.1111 (refer table 1) which is 0.2222 weeks.
The variance of the other path BàD is the sum of the variances of activities B and D.
The variance of the other path is the sum of 4 and 1 (refer table 1) which is 5 weeksThe variance of the other path BàD is 5 weeks.
Hence, the variance of the critical path AàC is 0.222 weeks and other path BàD is 5 weeks.
d)
To determine: The probability of finishing the project in 22 weeks, when A-C is normally distributed.
Answer to Problem 20P
Probability of finishing the project in 22 weeks is almost 1.
Explanation of Solution
Given information:
Activity | Immediate predecessor | Time in weeks | ||
a | m | b | ||
A | 9 | 10 | 11 | |
B | 4 | 10 | 16 | |
C | A | 9 | 10 | 11 |
D | B | 5 | 8 | 11 |
Probability of finishing the project in 22 weeks, when A-C is normally distributed:
The expected completion time of critical path AàC is 20 weeks with a variance of 0.22 weeks.
The standard deviation:
The standard deviation is calculated by taking square root of the variance which is 0.22 which yields 0.469.
Z value is calculated by dividing the difference of 22 and 20 with 0.469 which yields 4.264.
Reading from normal distribution tables given the mean is 20 weeks, the variance
Hence, probability of finishing the project in 22 weeks is almost 1.
e)
To determine: The probability of finishing the project in 22 weeks, when B-D is normally distributed.
Answer to Problem 20P
Probability of finishing the project in 22 weeks is 0.963.
Explanation of Solution
Given information:
Activity | Immediate predecessor | Time in weeks | ||
a | m | b | ||
A | 9 | 10 | 11 | |
B | 4 | 10 | 16 | |
C | A | 9 | 10 | 11 |
D | B | 5 | 8 | 11 |
Probability of finishing the project in 22 weeks, when B-D is normally distributed:
The expected completion time of path BàD is 18 weeks with a variance of 5 weeks.
The standard deviation:
The standard deviation is calculated by taking square root of the variance which is 5 which yields 2.236.
Z value is calculated by dividing the difference of 22 and 18 with 2.236 which yields 1.79.
Reading from normal distribution tables given the mean is 18 weeks, the variance
Hence, the probability of finishing the project in 22 weeks is 0.963.
f)
To explain: The reason for the probability that the critical path will be finished in 22 weeks or less is not necessarily the probability that the project will be finished in 22 weeks or less.
Explanation of Solution
Given information:
Activity | Immediate predecessor | Time in weeks | ||
a | m | b | ||
A | 9 | 10 | 11 | |
B | 4 | 10 | 16 | |
C | A | 9 | 10 | 11 |
D | B | 5 | 8 | 11 |
Explanation for the reason for the probability that the critical path will be finished in 22 weeks or less is not necessarily the probability that the project will be finished in 22 weeks or less:
The critical path AàC has a very small variance of only 0.22 weeks compared to the variance along path BàD which is 5 weeks. That is why, despite having lower expected time of completion of 18 weeks, the probability that the path BàD would be completed in 22 weeks is0.963.and is lower than the probability
The project is completed only when all the activities are completed.
Despite the probability of the critical path AàC, being completed in 22 weeks being almost 1, the probability that the project is completed in 22 weeks is0.963.
Want to see more full solutions like this?
Chapter 3 Solutions
PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
- This area of emotional intelligence describes your ability to not only understand your strengths and weaknesses but to recognize your emotions and their effect on you and your team’s performance self management self awareness relationship management social awarenessarrow_forwardEmotional intelligence is defined as the ability to understand and manage your emotions, as well as recognize and influence the emotions of those around you. True Falsearrow_forwardAt the Ford automobile Highland plant, assume the one-millionth vehicle was produced in 1916 at a cost of $8084 (in 2013 US$), by how much did the Ford company reduce his cost with each doubling of cumulative output from 1916 to 1927?arrow_forward
- At the Ford automobile Highland plant,in 1913, how long did the average worker stay with the plant and what was the average tenure of a worker?arrow_forwardCommunity Federal Bank in Dothan, Alabama, recently increased its fees to customers who use employees as tellers. Management is interested in whether its new tee policy has increased the number of customers now using its automatic teller machines to that point that more machines are required. The following table provides the number of automatic teller transactions by week. Use trend projection with regression to forecast usage for weeks 13-16.arrow_forwardDavison Electronics manufactures three LED television monitors, identified as Model A, Model B, and Model C. Davison Electronics four manufacturing plants. Each model has its lowest possible production cost when produced at Plant 1. However, Plant 1 does not have the capacity to handle the total production of all three models. As a result, at least some of the production must be routed to the other manufacturing plants. The following table shows the minimum production requirements for next month, the plant capacities in units per month, and the production cost per unit at each plant: Model Production Cost per Unit Minimum Production Requirements Plant 1 Plant 2 Plant 3 Plant 4 A $25 $28 $37 $34 48,000 B $26 $35 $36 $41 75,000 C $20 $31 $26 $23 60,000 Production Capacity 65,000 50,000 32,000 43,000 Davison’s objective is to determine the cost-minimizing production planarrow_forward
- Anecdotally, entrepreneurs frequently encounter two critical dilemmas in managing human resources: the timing of hiring and the decision regarding hiring a generalist versus a specialist for their growing venture. Deciding when to expand a team is crucial, as premature hiring (i.e., hiring too soon) can strain resources, while delayed hiring (i.e., hiring too late) might hinder growth opportunities. Moreover, the choice between hiring a generalist or a specialist depends on the specific needs and stage of the venture, with each option presenting distinct advantages and challenges. To address these issues, a management scholar seeks to identify the factors shaping the hiring cycle throughout the entrepreneurial journey and to understand the criteria for choosing between generalists and specialists at various stages of a venture. The scholar has assembled a sample of 20 experienced South African entrepreneurs who have encountered both failure and success in the financial technology…arrow_forward3. [25 pts.] Four projects are available for investment. The projects require the cash flows and yield the net present values (NPV) (in millions) shown in the following table. Project id. 1 2 Cash outflow at time 0 (million Lira) 8 8 NPV (million Lira) 12 11 3 4 6 5 8 6 If 20 million Lira is available for investment at time 0, find the investment plan that maximizes NPV. All investments are required to be 0 or 1 (fractional investment values are not permitted). a. Formulate the mathematical model. (Write the decision variables, objective function and the constraints.) [10 pts.] b. Find the optimal solution by using Branch and Bound method (Draw the branch and bound tree clearly, write also lower bounds(LB)) (Left branches x=0, right branches x =1) [15 pts.].arrow_forwardexamine the production concept and operations management, what are the key steps required to achieve success? Be specific in your response.arrow_forward
- Produce a 3000 report with references on one international organization of your choice and Address the following: Provide a brief introduction of the organisation and sector it operates in, including its mission and vision statements, its core values, a summary of its financial performance and a general overview of the business’s operational activities. From the relevant literature explain the Total Quality Management (TQM) processes the chosen organization follows and identify one quality challenge/issue that the organization faced or is currently facing. Explain how the organization managed/or still managing the particular quality challenge/issue. Critically analyze whether the organization failed or succeeded in achieving and maintaining quality performance. Provide a few critical recommendations for business managers in order to highlight the importance of Total Quality Management (TQM) within an organization.arrow_forward問題2 Production system design involves determining the arrangement of workstations and the... O allocation of resources to workstations design of the process O production schedule all of the abovearrow_forwardElaborate on the need for and the benefits of an effective supply chain management (SCM) system in the context of a globalized and networked economy. In your answer, explain how organizations like Dell and Hewlett-Packard leverage supply chain networks to maintain competitiveness, and analyse the impact of globalization, technological advancements, and business environment changes on supply chain structures. Additionally, evaluate the key components of SCM, including distribution network configuration, inventory management, and cash-flow management, and discuss how these components contribute to creating an effective and integrated supply chain. (15) 3.2. Critically evaluate the requirements for effective inventory management within an organization. In your answer, discuss the importance of inventory accounting systems, the role of cost information (holding, ordering, and shortage costs), and the significance of classification systems like ABC analysis. Additionally, analyse how…arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,