
To review:
The differences between the properties of water (H2O), ammonia (NH3), and methane (CH4), based on the hydrogen bonding in their structure. The heat of fusion for water, ammonia, and methane is given as 6.01, 5.66, and 0.94 kJ/mol, respectively. Also, determine increase or decrease in the density of ammonia in the form of ice (if generated), as compared to liquid ammonia.
Introduction:
The molecular mass of water, ammonia, and methane is almost equal, and all of them show tetrahedral geometry. The heat of fusion is the highest in water, decreases in ammonia, and is the least in methane. Water has a highly polar structure. The three molecules (water, ammonia, and methane) are sp3 hybridized and are tetrahedral instructure. However, there is a difference in the number of lone pairs in them, leading to an overall different geometry and different physical properties.

Explanation of Solution
Water has two hydrogen atom, shich are covalently bonded to one oxygen atom. The oxygen is sp3 hybridized. Due to the presence of twolone pairs, this molecule has a bent geometry. As a whole, a water molecule is polar and acts as a dipole. The electronegativity of oxygen is more than that of hydrogen, and thus, it bears a partial negative charge, whereas two hydrogen atoms beara partial positive charge. The hydrogen atoms in asingle water molecule are electrondeficient, and thus, tend to be attracted toward the oxygen atom of another water molecule. Thus, hydrogen bonds (intermolecular)act as bridges between neighboringwater molecules. One water molecule can form hydrogen bonds with four otherwater molecules.
The structures of thethreemolecules can be represented as
An ammoniamoleculehasonelone pair (unshared electron) ofa nitrogenatom and has a trigonal pyramidal structure. There is limited hydrogen bonding (intramolecular)in case of ammoniaasnitrogen has onlyone lone pair available.
Methane exists in a gaseous statethat has one carbon atom bonded with four hydrogen atoms. The central atom, that is, carbon, forms covalent bonds with four hydrogen atoms by the sharing of electrons. This sharing completes the outer shell of both the carbon and the hydrogen atoms. The four hydrogen atoms give an overall tetrahedral shape to the molecule. No hydrogen bonds are involved in methane as there is no highly electronegative element to form a bond with hydrogen.
A hydrogen bondhaslower bond strength thana covalent bond, thus, it is weaker. However, when a largenumber of intermolecular bonds are formed, they are quite strong. This explains the differences in the heat of fusion (energy required to melt ice by breaking bonds) for water, ammonia, and methane. Due to a highernumber of hydrogen bonds, physical propertie, such asmelting point, boiling point, heat capacity, the heat of fusion, surface tensio, nnd heat of vaporization, have higher values in wate, rs compared to that of methane and ammonia.
In ammonia, the density of the solid state (ice), if generated, is expected to be more than that of liquid ammonia. This is because the hydrogen bonding between different ammonia molecules will not be as extensive as in case of water insolid state (open cage structure in ice). This is due to limited hydrogen bonding of nitrogen. Thus, as a general case, the solid form of ammonia will beless denser than its liquid form.
Thus, it can be concluded that water, ammonia, and methane molecules are tetrahedral in structure, but differ in their overall geometry and physical properties due to thenumber of lone pairs in them and hydrogen bonding. The heat of fusion is the highest for water moleculesbecauseofstrong intermolecular hydrogen bonds. Also, ammonia ice will not form a cage-like structure (as in water), and thus, its density is expected to be lesser than that of liquid ammonia.
Want to see more full solutions like this?
Chapter 3 Solutions
Biochemistry: The Molecular Basis of Life
- 2. Which one is the major organic product obtained from the following reaction sequence? HO A OH 1. NaOEt, EtOH 1. LiAlH4 EtO OEt 2. H3O+ 2. H3O+ OH B OH OH C -OH HO -OH OH D E .CO₂Etarrow_forwardwhat is a protein that contains a b-sheet and how does the secondary structure contributes to the overall function of the protein.arrow_forwarddraw and annotate a b-sheet and lable the hydrogen bonding. what is an example that contains the b-sheet and how the secondary structure contributes to the overall function of your example protein.arrow_forward
- Four distinct classes of interactions (inter and intramolecular forces) contribute to a protein's tertiary and quaternary structures. Name the interaction then describe the amino acids that can form this type of interaction. Draw and annotate a diagram of the interaction between two amino acids.arrow_forwardExamine the metabolic pathway. The enzymes that catalyze each step are identified as "e" with a numeric subscript. e₁ e3 e4 A B с 1° B' 02 e5 e6 e7 E F Which enzymes catalyze irreversible reactions? ப e ez ☐ ez e4 ☐ ப es 26 5 e7 Which of the enzymes is likely to be the allosteric enzyme that controls the synthesis of G? €2 ез e4 es 26 5 e7arrow_forwardAn allosteric enzyme that follows the concerted model has an allosteric coefficient (T/R) of 300 in the absence of substrate. Suppose that a mutation reversed the ratio. Select the effects this mutation will have on the relationship between the rate of the reaction (V) and substrate concentration, [S]. ㅁㅁㅁ The enzyme would likely follow Michaelis-Menten kinetics. The plot of V versus [S] would be sigmoidal. The enzyme would mostly be in the T form. The plot of V versus [S] would be hyperbolic. The enzyme would be more active.arrow_forward
- Penicillin is hydrolyzed and thereby rendered inactive by penicillinase (also known as ẞ-lactamase), an enzyme present in some penicillin-resistant bacteria. The mass of this enzyme in Staphylococcus aureus is 29.6 kDa. The amount of penicillin hydrolyzed in 1 minute in a 10.0 mL. solution containing 1.00 x 10 g of purified penicillinase was measured as a function of the concentration of penicillin. Assume that the concentration of penicillin does not change appreciably during the assay. Plots of V versus [S] and 1/V versus 1/[S] for these data are shown. Vo (* 10 M minute"¹) 7.0 6.0 5.0 4.0 3.0 20 1.0 0.0 о 10 20 30 1/Vo (* 10 M1 minute) 20 103 90 BO 70 50 [S] (* 100 M) 40 50 60 y=762x+1.46 × 10" [Penicillin] (M) Amount hydrolyzed (uM) 1 0.11 3 0.25 5 0.34 10 0.45 30 0.58 50 0.61arrow_forwardConsider the four graphs shown. In each graph, the solid blue curve represents the unmodified allosteric enzyme and the dashed green curve represents the enzyme in the presence of the effector. Identify which graphs correctly illustrate the effect of a negative modifier (allosteric inhibitor) and a positive modifier (allosteric activator) on the velocity curve of an allosteric enzyme. Place the correct graph in the set of axes for each type of modifier. Negative modifier Reaction velocity - Positive modifier Substrate concentration - Reaction velocity →→→→ Substrate concentration Answer Bankarrow_forwardConsider the reaction: phosphoglucoisomerase Glucose 6-phosphate: glucose 1-phosphate After reactant and product were mixed and allowed to reach at 25 °C, the concentration of each compound at equilibrium was measured: [Glucose 1-phosphate] = 0.01 M [Glucose 6-phosphate] = 0.19 M Calculate Keq and AG°'. Код .0526 Incorrect Answer 7.30 AG°' kJ mol-1 Incorrect Answerarrow_forward
- Classify each phrase as describing kinases, phosphatases, neither, or both. Kinases Phosphatases Neither Both Answer Bank transfer phosphoryl groups to acidic amino acids in eukaryotes may use ATP as a phosphoryl group donor remove phosphoryl groups from proteins catalyze reactions that are the reverse of dephosphorylation reactions regulate the activity of other proteins catalyze phosphorylation reactions PKA as an example turn off signaling pathways triggered by kinasesarrow_forwardConsider the reaction. kp S P kg What effects are produced by an enzyme on the general reaction? AG for the reaction increases. The rate constant for the reverse reaction (kr) increases. The reaction equilibrium is shifted toward the products. The concentration of the reactants is increased. The activation energy for the reaction is lowered. The formation of the transition state is promoted.arrow_forwardThe graph displays the activities of wild-type and several mutated forms of subtilisin on a logarithmic scale. The mutations are identified as: • The first letter is the one-letter abbreviation for the amino acid being altered. • The number identifies the position of the residue in the primary structure. ⚫ The second letter is the one-letter abbreviation for the amino acid replacing the original one. • Uncat. refers to the estimated rate for the uncatalyzed reaction. Log₁(S-1) Wild type S221A H64A -5 D32A S221A H64A D32A -10 Uncat. How would the activity of a reaction catalyzed by a version of subtilisin with all three residues in the catalytic triad mutated compare to the activity of the uncatalyzed reaction? It would have more activity, because the reaction catalyzed by the triple mutant is approximately three-fold faster than the uncatalyzed reaction. It would have less activity, because the reaction catalyzed by the triple mutant is approximately 1000-fold slower than the…arrow_forward
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Anatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax College



