
Concept explainers
Equivalency, conversion factor, solving quantitative problems, analyze, identify, construct, check.

Interpretation:
A brief description of the relationship among the each of following groups of terms is to be given for the equivalency, conversion factor, solving quantitative problems, analyze, identify, construct, check.
Concept introduction:
The term equivalency can be defined as the two quantities that are equivalent in value. For example, 0.025 furlong and 1 rod will represent the same physical length and can be expressed as 0.025 furlong = 1 rod. When an equivalency is expressed as fractional value it is called as conversion factor. The application of equivalence and conversion factors are considered as a central part to solving quantitative problems in chemistry.
Answer to Problem 1CLE
Equivalency is denoted as the two quantities that are equivalent in value. Ex: 0.025 furlong and 1 rod. The two quantities furlong and rod will represent the same physical length and can be expressed as 0.025 furlong = 1 rod. When an equivalency is expressed as fractional value it is called as conversion factor. The conversion factor of equivalency 0.025 = 1 rod is 0.025/1 rod. Similarly, there are four different steps for solving quantitative problems such as; 1) analyze the problem statement, (2) identify the equivalencies, which is need to solve the problem, (3) construct the solution set up, and (4) check the solution for the given problem.
Explanation of Solution
The term equivalency can be defined as the two quantities that are equivalent in value. For example, 0.025 furlong and 1 rod will represent the same physical length and can be expressed as 0.025 furlong = 1 rod.
When an equivalency is expressed as fractional value it is called as conversion factor. The conversion factor of equivalency 0.025 = 1 rod is 0.025/1 rod. Two conversion factors can be written for a given equivalency value. In many problems, the equivalence will not be explicitly expressed.
Alternatively, 7 days = 1 week. For this statement, two conversion factors can be obtained.
If the quantity in the given assignment is in week, the above expression can be written as,
Generally, in order to solve the problems, the following points need to be verified.
1) Analyze: It includes the determination of the given quantity, such as quantity = value x unit. The property of the given quantity and the property of the wanted quantity is to be described. Finally, the unit of the wanted quantity will be stated.
2) Identify: It includes the identification of equivalence to solve the given problem. Then, change the equivalence to conversion factor.
3) Construct: It is solution setup. In this process, the units will be confirmed for their correct cancelation and calculation of values for the answer.
4) Check: This process will be taken in two levels such as making sense (did we obtain a reasonable value) and what was learned (what is the new knowledge obtained from the calculation).
Thus, a brief description of the relationship among the each of following groups of terms is checked.
Want to see more full solutions like this?
Chapter 3 Solutions
Introductory Chemistry: An Active Learning Approach
- Don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solution and don't used hand raitingarrow_forwardOA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forward
- Don't used hand raitingarrow_forwardQuizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. CI Cl H3C-Cl CI a) A B C D Br Br b) A B C Br H3C-Br Darrow_forwardQ4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution, respectively. F CI Br | Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to have a reasonable yield of product. NH2 Br Br Br .OH Brarrow_forward
- Classify each molecule as optically active or inactive. Determine the configuration at each H соон Chirality center OH 애 He OH H3C Ноос H H COOH A K B.arrow_forwardQ1: Rank the relative nucleophilicity of the following species in ethanol. CH3O¯, CH3OH, CH3COO, CH3COOH, CH3S Q2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




