Chemistry In Context
Chemistry In Context
9th Edition
ISBN: 9781259638145
Author: Fahlman, Bradley D., Purvis-roberts, Kathleen, Kirk, John S., Bentley, Anne K., Daubenmire, Patrick L., ELLIS, Jamie P., Mury, Michael T., American Chemical Society
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 14Q

Use Figure 3.4 to specify the region of the electromagnetic spectrum where radiation of each of the following wavelengths is found.

Hint: Change each wavelength to meters before making the comparison.

  1. a. 2.0 cm
  2. b. 50 um
  3. c. 400 nm
  4. d. 150 mm

Chapter 3, Problem 14Q, Use Figure 3.4 to specify the region of the electromagnetic spectrum where radiation of each of the

Figure 3.4

The electromagnetic spectrum, highlighting the visible region. Note that 10x is equivalent to 1 × 10x.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The region of the electromagnetic spectrum for the given wavelength has to be specified.

Concept-Introduction:

Wavelength: The distance between successive peaks in a wave and measured in units of length.

Frequency: The number of waves passed a point in a certain amount of time.

Relation between wavelength and frequency:

Frequency(ν)=speedoflight(c)wavelength(λ)

Where, c is constant, the value of c is (3.00×108m/s) and represents the maximum velocity that light is able to travel through air.

Conversion of centimeter into meter (cm to m): 1 cm=1×10-2m

Explanation of Solution

The wavelength is 2.0 cm

Conversion of centimeter to meter is,

1 cm=1×10-2m2.0 cm=?=(1×10-2m)(2.0cm)1 cm=2×10-2m

Therefore, the given value of wavelength in meter is 2×10-2m which fall in the region of Microwave region of the spectrum.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The region of the electromagnetic spectrum for the given wavelength has to be specified.

Concept-Introduction:

Wavelength: The distance between successive peaks in a wave and measured in units of length.

Frequency: The number of waves passed a point in a certain amount of time.

Relation between wavelength and frequency:

Frequency(ν)=speedoflight(c)wavelength(λ)

Where, c is constant, the value of c is (3.00×108m/s) and represents the maximum velocity that light is able to travel through air.

Conversion of micrometer into meter (μm to m): 1 μm=1×10-6m

Explanation of Solution

The wavelength is 50μm

Conversion of micrometer to meter is,

1 μm=1×10-6m50 μm=?=(1×10-6m)(50μm)μm=50×10-6m

Therefore, the given value of wavelength in meter is 50×10-6m which fall in the region of visible region of the spectrum.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The region of the electromagnetic spectrum for the given wavelength has to be specified.

Concept-Introduction:

Wavelength: The distance between successive peaks in a wave and measured in units of length.

Frequency: The number of waves passed a point in a certain amount of time.

Relation between wavelength and frequency:

Frequency(ν)=speedoflight(c)wavelength(λ)

Where, c is constant, the value of c is (3.00×108m/s) and represents the maximum velocity that light is able to travel through air.

Conversion of nanometer into meter (nm to m): 1 nm=1×10-9m

Explanation of Solution

The given wavelength is 400nm

Conversion of nanometer to meter is,

1 nm=1×10-9m400nm=?=(1×10-9m)(400nm)1 nm=40×10-8m

Therefore, the given value of wavelength in meter is 40×10-8m which fall in the region of violet region of visiblelight of the spectrum. Because visible region begins from the range 10-610-8m, so the obtained range falls at the violet color.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The region of the electromagnetic spectrum for the given wavelength has to be specified.

Concept-Introduction:

Wavelength: The distance between successive peaks in a wave and measured in units of length.

Frequency: The number of waves passed a point in a certain amount of time.

Relation between wavelength and frequency:

Frequency(ν)=speedoflight(c)wavelength(λ)

Where, c is constant, the value of c is (3.00×108m/s) and represents the maximum velocity that light is able to travel through air.

Conversion of millimeter into nanometer (mm to m): 1 mm=1×10-3m

Explanation of Solution

The given wavelength is 150mm

Conversion of millimeter to meter is,

1 mm=1×10-3m150mm=?=(1×10-3m)(150 mm)1 mm=15×10-2m

Therefore, the given value of wavelength in meter is 15×10-2m which fall in the region of microwave region of the spectrum.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q2: Ranking Acidity a) Rank the labeled protons in the following molecule in order of increasing pKa. Briefly explain the ranking. Use Table 2.2 as reference. Ha Нь HC H-N Ha OHe b) Atenolol is a drug used to treat high blood pressure. Which of the indicated N-H bonds is more acidic? Explain. (Hint: use resonance structures to help) Name the functional groups on atenolol. H H-N atenolol Ν H-N OH Н
Answer d, e, and f
If the rotational constant of a molecule is B = 120 cm-1, it can be stated that the transition from 2←1:a) gives rise to a line at 120 cm-1b) is a forbidden transitionc) gives rise to a line at 240 cm-1d) gives rise to a line at 480 cm-1

Chapter 3 Solutions

Chemistry In Context

Ch. 3.4 - Prob. 3.12YTCh. 3.4 - Prob. 3.13YTCh. 3.5 - Prob. 3.14YTCh. 3.5 - Prob. 3.15YTCh. 3.6 - Prob. 3.16YTCh. 3.7 - Draw the Lewis structure for each molecule. a. HBr...Ch. 3.7 - Prob. 3.18YTCh. 3.7 - Prob. 3.19YTCh. 3.7 - You Decide The Ozone Layer Based on the reactions...Ch. 3.8 - Prob. 3.21YTCh. 3.8 - Prob. 3.22YTCh. 3.8 - Prob. 3.23YTCh. 3.8 - Prob. 3.24YTCh. 3.9 - Prob. 3.25YTCh. 3.10 - Prob. 3.26YTCh. 3.10 - Prob. 3.27YTCh. 3.10 - Prob. 3.28YTCh. 3.10 - Prob. 3.29YTCh. 3.11 - Skill Building Particulate Classification An...Ch. 3.11 - Prob. 3.31YTCh. 3.11 - Prob. 3.32YTCh. 3.11 - Prob. 3.33YTCh. 3.11 - Scientific Practices UV Interactions with Matter...Ch. 3 - How does ozone differ from oxygen in its chemical...Ch. 3 - Prob. 2QCh. 3 - Prob. 3QCh. 3 - Prob. 4QCh. 3 - Prob. 5QCh. 3 - a. What is a Dobson unit? b. Does a reading of 320...Ch. 3 - Using the periodic table as a guide, specify the...Ch. 3 - Consider this representation of a periodic table....Ch. 3 - Give the name and symbol for the element with this...Ch. 3 - Prob. 10QCh. 3 - Assuming that the octet rule applies, draw the...Ch. 3 - Prob. 12QCh. 3 - Consider these two waves representing different...Ch. 3 - Use Figure 3.4 to specify the region of the...Ch. 3 - What determines the color of light? Describe the...Ch. 3 - Prob. 16QCh. 3 - Does all light travel at the same speed in a...Ch. 3 - Arrange these types of radiation in order of...Ch. 3 - The microwaves in home microwave ovens have a...Ch. 3 - Ultraviolet radiation is categorized as UVA, UVB,...Ch. 3 - Calculate the wavelength, in nanometers, of the...Ch. 3 - The distance from Earth to the Sun is about 1.50 ...Ch. 3 - Draw Lewis structures for any two different CFCs.Ch. 3 - Prob. 24QCh. 3 - Prob. 25QCh. 3 - Prob. 26QCh. 3 - The following free radicals all play a role in...Ch. 3 - a. How were the original measurements of increases...Ch. 3 - Prob. 29QCh. 3 - The EPA has used the slogan Ozone: Good Up High,...Ch. 3 - Nobel Laureate F. Sherwood Rowland referred to the...Ch. 3 - Prob. 32QCh. 3 - Prob. 33QCh. 3 - Prob. 34QCh. 3 - Prob. 35QCh. 3 - The average length of an OO single bond is 132 pm....Ch. 3 - Prob. 37QCh. 3 - Describe why ozone is more reactive than oxygen...Ch. 3 - Prob. 39QCh. 3 - Prob. 40QCh. 3 - Prob. 41QCh. 3 - All the reports of the damage caused by UV...Ch. 3 - Prob. 43QCh. 3 - Prob. 44QCh. 3 - Prob. 45QCh. 3 - Prob. 46QCh. 3 - Prob. 47QCh. 3 - Development of the stratospheric ozone hole has...Ch. 3 - Prob. 49QCh. 3 - Prob. 50QCh. 3 - Resonance structures can be used to explain the...Ch. 3 - Prob. 52QCh. 3 - Prob. 53QCh. 3 - Prob. 54QCh. 3 - Prob. 55QCh. 3 - Many different types of ozone generators...Ch. 3 - The effect a chemical substance has on the ozone...Ch. 3 - Cooking with an electric stove can have a negative...Ch. 3 - One mechanism that helps break down ozone in the...Ch. 3 - Polar stratospheric clouds (PSCs) play an...Ch. 3 - Prob. 61Q

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Living by Chemistry
Chemistry
ISBN:9781464142314
Author:Angelica M. Stacy
Publisher:W. H. Freeman
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY