FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 105CP
Under what conditions can a moving body of fluid be treated as a rigid body?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A fluid sample is contained between two parallel plates separated by a distance of 2+- 0,1mm . The area of the plates is 100+- 0,01 cm². The bottom plate is stationary, and the top plate moves at a velocity of 1 cm/s when a force of 315+- 25 dynes is applied to it, and at 5 cm/s when a force of 1650+- 25 dynes is applied.
(a) What is the viscosity of this fluid?
(b) What is the rheological behavior of this fluid and discussing this behavior?
(c) What is the range of uncertainty for your answer in item (a).
(b) Consider two identical water tanks (20 m x 10 m x 10 m) filled with water. The depth
of water in the first tank is 8 m and it is stationary. The depth of water in the second tank is 6
m and it is moving vertically downward with a constant acceleration of 3.3 m/s?. Which tank
will have a higher pressure at the bottom?
Now, the first tank is moving horizontally in the direction of its length with a constant
acceleration of 2.4 m/s?. Determine the shape of the free surface and the total force on the
base and vertical faces of this tank.
What will happen if these tanks are completely filled with water?
A 12.5 kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in
5.60 cm below the surface of the water.
Scale
a
b
(a) What are the magnitudes of the forces (in N) acting on the top and on the bottom of the block due to the s
significant figures.)
Frop
N
N
Fbottom
(b) What is the reading of the spring scale (in N)?
N
(c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block. (
II
Chapter 3 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 3 - What is the difference between gage pressure and...Ch. 3 - A tinysteel cube is suspended in water by a...Ch. 3 - Explain why some people experience nose bleeding...Ch. 3 - Consider two identical fans, one at sea level and...Ch. 3 - Someone claims that the absolute pressure in a...Ch. 3 - Express Pascal’s law, and give a real-world...Ch. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - A vacuum gage connected to a chamber reads 25 kPa...Ch. 3 - The pressure at the exit of an air compressor is...Ch. 3 - A diver's watch resists an absolute pressure of...
Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - The pressure in a water line is 1500 kPa. What is...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - A 180-Ibm man has a total foot imprint area of 68...Ch. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - The piston of a vertical piston-cylinder device...Ch. 3 - The vacuum pressure of a condenser is given to be...Ch. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - Determine the pressure exerted on a diver at 15 m...Ch. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - The hydraulic lift in a car repair shop has an...Ch. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - There is water at a height of 1 m in the rube open...Ch. 3 - Prob. 53PCh. 3 - A simple experiment has long been used to...Ch. 3 - A multifluid container is connected to a U-tube....Ch. 3 - A hydraulic lift is to be used to lift a 2500 kg...Ch. 3 - On a day in which the local atmospheric pressure...Ch. 3 - A U-tube manometer is used to measure the pressure...Ch. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A cylindrical tank is folly filled with water...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - The bowl shown in the figure (the white volume) is...Ch. 3 - A triangular-shaped gate is hinged at point A, as...Ch. 3 - Gate AB ( 0.60.9m ) is located at the bottom of a...Ch. 3 - Find the force applied by support BC to the gate...Ch. 3 - A concrete block is attached to the sate as shown....Ch. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Prob. 93CPCh. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 95CPCh. 3 - Consider two identical spherical bails submerged...Ch. 3 - Prob. 97PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - The density of a liquid is to be determined by an...Ch. 3 - Prob. 100PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - One of the common procedures in fitness programs...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - A water tank is being towed by a truck on a level...Ch. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 111PCh. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 120PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A 4-m-diameter vertical cylindrical milk tank...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Two vertical and connected cylindrical tanks of...Ch. 3 - The U-tube shown the figure subjected to an...Ch. 3 - Prob. 131EPCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Determine the pressure exerted on the surface of a...Ch. 3 - A vertical, frictionless piston-cylinder device...Ch. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - The average atmospheric pressure on earth is...Ch. 3 - Prob. 137PCh. 3 - Prob. 139PCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - Prob. 142PCh. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 144PCh. 3 - An oil pipeline and a 1.3-m3 rigid air tank are...Ch. 3 - A 20-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 148PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 151PCh. 3 - Prob. 152EPCh. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 156PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - The density of a floating body can be determined...Ch. 3 - A raft is made using a number of logs with 25 cm...Ch. 3 - A prismatic timber is at equilibrium in a liquid,...Ch. 3 - The cylindrical lank containing water accelerates...Ch. 3 - A 30-cm-diameter. 100-cm-hish vertical cylindrical...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 168PCh. 3 - Determine the vertical force applied by water on...Ch. 3 - Prob. 170PCh. 3 - In order to keep the cone-shaped plus closed as...Ch. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - The atmospheric pressure in a location is measured...Ch. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 186PCh. 3 - Prob. 187PCh. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - Compare fee vortex with forced vortex according to...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- If the piston mass is 20 kg and the car mass with its base is 400 kg, what will the minimum pressure (kpa) that is required from the air compressor to lift the car? There are three layers of oils with different specific gravities as S1=0.95, S2-0.85, and S3-0.38. Neglect the shear force between the piston and its cylinder. Control valve - piston Air pressure from compressor 25-cm diameter 60 cm S3 S2 50 cm Air S1 40 cm S1 Lenovo K9 Note Al Dual Camera -12 DMarrow_forwardInside a large container filled with glycerin at rest, which has a density ? = 1260 kg/m3 andviscosity ? = 0.830 Pa ∙ s, a sphere of radius 2.50 cm, made of a material whose density is 400 kg/m3, and is released from rest. Under these conditions:a. Draw a free-body diagram, showing all the forces to which the ball is subjected.sphere while moving within the fluid, also indicate the direction of movement.b. Determine the terminal speed of the sphere.c. Calculate the acceleration of the sphere when its speed is half its terminal speed.d. Suppose the sphere is now placed in an oil whose viscosity and density at room temperatureenvironment are less than those of glycerin (?oil = 875 kg/m3 and ?oil = 0.255 Pa ∙ s). What happens to the terminal speed of the sphere: does it increase, decrease, or stay the same? Justify yourresponse.arrow_forwardThe bottom quarter of a vertical cylindrical tank of total height 0.4 m and diameter 0.3 m is filled with a liquid (SG > 1, like glycerin) and the rest with water, as shown in the figure. The tank is now rotated about its vertical axis at a constant angular speed of ω. Determine (a) the value of the angular speed when the point P on the axis at the liquid-liquid interface touches the bottom of the tank and (b) the amount of water that would be spilled out at this angular speed.arrow_forward
- -- Q3. The boundary of a system is fixed or movable and has mass but has no thickness and no volume. fixed or movable with zero thickness, no mass, and no volume. fixed and has mass, thickness, and no volume. movable and has thickness, no volume, and no mass.arrow_forwardThe piston of a vertical piston-cylinder device containing a gas has a mass of 40 kg and a cross-sectional area of 0.012 m2 . The local atmospheric pressure is 95 kPa, and the gravitational acceleration is 9.81 m/s2 (a) Determine the pressure inside the cylinder. (b) If some heat is transferred to the gas and its volume is doubled, do you expect the pressure inside the cylinder to change?arrow_forwardA force, P, is applied to a piston with a mass of 15 kg and a diameter of 43 cm that rests on top of a cylinder containing water as shown. (The piston is free to move in the cylinder, but is sealed so no water can escape.) An open U-tube manometer is connected to the cylinder as shown. Determine the applied force, P in kN, if h1 = 68 mm and h = 100 mm. You can use the following data: the specific weight of water is 9.81 kN/m³ and the specific gravity of mercury is 13.546. Approximate your answer to three decimal places TU Piston Water Mercuryarrow_forward
- The specific weight and the specific gravity of a body of unknown composition are desired. Its weight in air is found to be 890 N, and in water it weighs 667 N.arrow_forwardA gas is contained in a vertical, frictionless piston– cylinder device. The piston has a mass of 5 kg and a cross-sectional area of 35 cm2. A compressed spring above the piston exerts a force of 75 N on the piston. If the atmospheric pressure is 95 kPa, determine the pressure inside the cylindearrow_forwardAs shown in the figure below, a cylindrical tank of radius R₁ = 1.7 m and height H= 1 m is fully filled with a liquid of specific gravity 0.8. At the top of the tank is a circular hole of radius R₂ = 0.5R₁. The tank is subsequently rotated about its axis at an angular velocity w so that the bottom of the tank is just exposed. Assume that the density of water is 1000 kg/m³ and the gravitational acceleration g = 9.81 m/s². The liquid gage pressure PB at the upper right hand corner of the tank (Point B) is kPa. Liquidi R₂ R₁- Liquid مج B 9arrow_forward
- 2. Access plates on the industrial holding tank are bolted shut when the tank is filled with vegetable oil. Determine the resultant force that this liquid exerts on plate B, and its location measured from t he bottom of the tank. Use the Geothermal Method. P = 932 kg/ m^3 (Hibbeler, 2015). 4 m 4 m ,1.5 m 2.5 m 5 m 2 marrow_forwardASAParrow_forwardA submarine is modeled as a cylinder with a length of 440 ft, a diameter of 50 ft, and a conning tower, as shown in the figure below. The submarine can dive a distance of 50 ft from the floating position in about 30 s. Diving is accomplished by taking water into the ballast tank so the submarine will sink. When the submarine reaches the desired depth, some of the water in the ballast tank is discharged leaving the submarine in "neutral buoyancy" (i.e., it will neither rise nor sink). 3% of cylinder 7% of cylinder volume volume 25 ft Ballast tank Partially submerged position 3 ft 146344 50 ft Y'water = 64 lb/ft³ + Totally submerged position For the conditions illustrated, find (a) the weight of the submarine and (b) the volume of the water that must be in the ballast tank when the submarine is in neutral buoyancy. For seawater, S = 1.03. (a) W = 5.866 x107 lb (b) == Water ft3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY