The observation that the N − N bond length in N 2 O is 112 pm and that the N − O bond length is 119 pm to be explained. The elimination of any resonance structure of N 2 O on the basis of formal charge is to be identified. The consistency of this elimination is to be checked with the given observation. Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists. Formal charge is a charge given to an atom with assumption that electrons are shared equally between atoms in all chemical bonds irrespective of their electronegativity. To determine: The rationalization of the observation that the N − N bond length in N 2 O is 112 pm and that the N − O bond length is 119 pm ; if any of the resonance structure of N 2 O can be eliminated on the basis of formal charge; if this elimination is consistent with the given observation.
The observation that the N − N bond length in N 2 O is 112 pm and that the N − O bond length is 119 pm to be explained. The elimination of any resonance structure of N 2 O on the basis of formal charge is to be identified. The consistency of this elimination is to be checked with the given observation. Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists. Formal charge is a charge given to an atom with assumption that electrons are shared equally between atoms in all chemical bonds irrespective of their electronegativity. To determine: The rationalization of the observation that the N − N bond length in N 2 O is 112 pm and that the N − O bond length is 119 pm ; if any of the resonance structure of N 2 O can be eliminated on the basis of formal charge; if this elimination is consistent with the given observation.
Solution Summary: The author explains that the Lewis structure depicts the bonding between atoms and the lone pairs of electrons if exists.
Interpretation: The observation that the N−N bond length in N2O is 112pm and that the N−O bond length is 119pm to be explained. The elimination of any resonance structure of N2O on the basis of formal charge is to be identified. The consistency of this elimination is to be checked with the given observation.
Concept introduction: The Lewis structure is also known as dot structure. This structure depicts the bonding between atoms and the lone pairs of electrons if exists.
Formal charge is a charge given to an atom with assumption that electrons are shared equally between atoms in all chemical bonds irrespective of their electronegativity.
To determine: The rationalization of the observation that the N−N bond length in N2O is 112pm and that the N−O bond length is 119pm; if any of the resonance structure of N2O can be eliminated on the basis of formal charge; if this elimination is consistent with the given observation.
Draw the complete mechanism for the reaction below. Please include appropriate arrows, intermediates, and formal charges.
(c) The following data have been obtained for the hydrolysis of sucrose, C12H22O11, to
glucose, C6H12O6, and fructose C6H12O6, in acidic solution:
C12H22O11 + H2O → C6H12O6 + C6H12O6
[sucrose]/mol dm³
t/min
0
0.316
14
0.300
39
0.274
60
0.256
80
0.238
110
0.211
(i) Graphically prove the order of the reaction and determine the rate constant of the
reaction.
(ii) Determine the half-life, t½ for the hydrolysis of sucrose.
(III) adsorbent
(b) Adsorption of the hexacyanoferrate (III) ion, [Fe(CN)6] ³, on y-Al2O3 from aqueous
solution was examined. The adsorption was modelled using a modified Langmuir
isotherm, yielding the following values of Kat pH = 6.5:
(ii)
T/K
10-10 K
280
2.505
295
1.819
310
1.364
325
1.050
Determine the enthalpy of adsorption, AadsHⓇ.
If the reported value of entropy of adsorption, Aads Se = 146 J K-1 mol-1 under the above
conditions, determine Aads Gº.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell