Concept explainers
A laboratory
(a)
Answer to Problem 29.10P
Explanation of Solution
Given info: A magnetic field of magnitude
Explanation:
The formula to calculate the Magnetic force acting on a moving charge particle is,
Here,
The cross product of
Here,
Substitute
The cross product is maximum for
The mass of proton is
Substitute
Conclusion:
Therefore, the maximum magnetic force that is exerted on the proton is
(b)
Answer to Problem 29.10P
Explanation of Solution
Given info: A magnetic field of magnitude
Explanation:
The formula to calculate the force acting on a proton of mass
Here,
Substitute
Conclusion:
Therefore, the magnitude of maximum acceleration of the proton is
(c)
Answer to Problem 29.10P
Explanation of Solution
Given info: A magnetic field of magnitude
Explanation:
The formula to calculate the Magnetic force acting on a moving charge particle is,
Here,
The cross product of
Here,
Substitute
The cross product is maximum for
The mass of electron is
Substitute
Conclusion:
Therefore, the maximum magnetic force that is exerted in the case of proton is same for the electron.
(d)
Answer to Problem 29.10P
Explanation of Solution
Given info: The proton makes an angle of
Explanation:
The formula to calculate the force acting on a proton of mass
Here,
Substitute
Conclusion:
Therefore, the magnitude of maximum acceleration obtained in the case of proton is not same for the electron.
Want to see more full solutions like this?
Chapter 29 Solutions
PHYSICS 1250 PACKAGE >CI<
- A proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forwardIn a cyclotron (one type of particle accelerator), a deuteron (of mass 2.00 u) reaches a final speed of 10.0% of the speed of light while moving in a circular path of radius 0.480 m. What magnitude of magnetic force is required to maintain the deuteron in a circular path?arrow_forward
- A 1.00-kg ball having net charge Q = 5.00 C is thrown out of a window horizontally at a speed v = 20.0 m/s. The window is at a height h = 20.0 m above the ground. A uniform horizontal magnetic field of magnitude B = 0.010 0 T is perpendicular to the plane of the balls trajectory. Find the magnitude of the magnetic force acting on the ball just before it hits the ground. Hint: Ignore magnetic forces in finding the balls final velocity.arrow_forwardA charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- If a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forward(a) What is the force per meter on a lightning bolt at the equator that carries 20,000 A perpendicular to the Earth's 3.00105-T field? (b) What is the direction of the force it the current is straight up and the Earth’s field direction is due north, parallel to the ground?arrow_forwardA laboratory electromagnet produces a magnetic field of magnitude 1.50 T. A proton moves through this field with a speed of 6.00 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. (b) What is the magnitude of the maximum acceleration of the proton? (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (d) Would the electron undergo the same acceleration? Explain.arrow_forward
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardA wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forward(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by competing it with typical static electricity and noting that static is often absent.arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning