Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 1P
A proton travels with a speed of 3.00 × 106 m/s at an angle of 37.0° with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A particle with charge 9.78 x 10^-6 C moves at 8.62 x 10^6 m/s through a magnetic field of strength 1.18 T. The angle between the particle s velocity and the magnetic field direction is 40.5 degrees and the particle undergoes an acceleration of 16.0 m/s^2. What is the particle s mass?
A proton travels with a speed of 5.02 x 106 m/s in a direction that makes an angle of 60.0° with the direction of a magnetic field of magnitude 0.180 T in the positive x direction. What are the magnitudes of (a) the magnetic force on the proton and (b) the proton’s acceleration?
In New England, the horizontal component of the Earth's magnetic field has a magnitude of 1.9 × 10-5 T. An electron is shot vertically straight up from the ground with a speed of 3.3 × 106 m/s. What is the magnitude of the acceleration caused by the magnetic force? Ignore the gravitational force acting on the electron.
Chapter 22 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 22.2 - An electron moves in the plane of this paper...Ch. 22.3 - A charged particle is moving perpendicular to a...Ch. 22.5 - A wire carries current in the plane of this paper...Ch. 22.7 - Consider the magnetic field due to the current in...Ch. 22.8 - Prob. 22.5QQCh. 22.9 - Figure 22.30 (Quick Quiz 22.6) Four closed paths...Ch. 22.9 - Prob. 22.7QQCh. 22.10 - Consider a solenoid that is very long compared...Ch. 22 - Prob. 1OQCh. 22 - What creates a magnetic field? More than one...
Ch. 22 - A charged particle is traveling through a uniform...Ch. 22 - A proton moving horizontally enters a region where...Ch. 22 - Two long, parallel wires each carry the same...Ch. 22 - Two long, straight wires cross each other at a...Ch. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Answer each question yes or no. (a) Is it possible...Ch. 22 - A long, straight wire carries a current I (Fig....Ch. 22 - A thin copper rod 1.00 m long has a mass of 50.0...Ch. 22 - A magnetic field exerts a torque on each of the...Ch. 22 - Two long, parallel wires carry currents of 20.0 A...Ch. 22 - Prob. 14OQCh. 22 - A long solenoid with closely spaced turns carries...Ch. 22 - Solenoid A has length L and N turns, solenoid B...Ch. 22 - Prob. 1CQCh. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Prob. 5CQCh. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - Imagine you have a compass whose needle can rotate...Ch. 22 - Prob. 9CQCh. 22 - Can a constant magnetic field set into motion an...Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A proton travels with a speed of 3.00 106 m/s at...Ch. 22 - Determine the initial direction of the deflection...Ch. 22 - An electron is accelerated through 2.40 103 V...Ch. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Review. An electron moves in a circular path...Ch. 22 - A cosmic-ray proton in interstellar space has an...Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Consider the mass spectrometer shown schematically...Ch. 22 - Prob. 16PCh. 22 - The picture tube in an old black-and-white...Ch. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - In Figure P22.20, the cube is 40.0 cm on each...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - A wire 2.80 m in length carries a current of 5.00...Ch. 22 - A current loop with magnetic dipole moment is...Ch. 22 - A rectangular coil consists of N = 100 closely...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Calculate the magnitude of the magnetic field at a...Ch. 22 - An infinitely long wire carrying a current I is...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - One long wire carries current 30.0 A to the left...Ch. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - 3. In Niels Bohr’s 1913 model of the hydrogen...Ch. 22 - Review. In studies of the possibility of migrating...Ch. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - In Figure P22.43, the current in the long,...Ch. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - A packed bundle of 100 long, straight, insulated...Ch. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - A long, straight wire lies on a horizontal table...Ch. 22 - Prob. 54PCh. 22 - A single-turn square loop of wire, 2.00 cm on each...Ch. 22 - Prob. 56PCh. 22 - A long solenoid that has 1 000 turns uniformly...Ch. 22 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 22 - Prob. 59PCh. 22 - In Niels Bohr’s 1913 model of the hydrogen atom,...Ch. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - The Hall effect finds important application in the...Ch. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Assume the region to the right of a certain plane...Ch. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Review. Rail guns have been suggested for...Ch. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A cosmic ray proton moving toward Earth at 5.00107 m/s experiences a magnetic force of 1.70l0l6 N. What is the strength of the magnetic field if there is a 45 angle between it and the proton’s velocity? (b) Is the value obtained in part a. consistent with the known strength of Earth's magnetic field on its surface? Discuss.arrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forwardIn a cyclotron (one type of particle accelerator), a deuteron (of mass 2.00 u) reaches a final speed of 10.0% of the speed of light while moving in a circular path of radius 0.480 m. What magnitude of magnetic force is required to maintain the deuteron in a circular path?arrow_forward
- A magnetic field of 0.2 T is acting in the south-west direction. (You can ignore the earth’s magnetic field.) A particle of mass 0.06 kg and charge 0.6 C is travelling in the west direction with unknown speed. It is seen to move vertically upwards with an acceleration of 8 m/s2. a) What is the total force acting on this particle in the (upwards) vertical direction? b) What is the magnitude of the magnetic force acting on this particle? (You can assume that the acceleration due to the earth’s gravity is 10 m/s2 .) c) What is speed of the particle?arrow_forwardA proton and an alpha particle are moving perpendicular to a uniform magnetic field with the same speed. If the velocity of the proton is at an angle of 20° with respect to the magnetic field direction, at what angle to the magnetic field direction would the alpha particle be moving if it experiences the same magnitude acceleration as the proton? The alpha particle has 4 times the mass of the proton and twice its charge.arrow_forwardA proton travels with a speed of 5.00 x 10 6 m/s at an angle of 36.0° with the direction of a magnetic field of 0.700 T in the y direction. What is the magnitude of the magnetic force on the proton?arrow_forward
- In New England, the horizontal component of the earth's magnetic field has a magnitude of 1 . 6 × 10 - 5 T . A proton is shot vertically straight down towards the ground with a speed of 2 . 1 × 10 6 m / s . What is the magnitude of the magnetic force?arrow_forwardA charged particle of mass 0.0020 kg is subjected to a 6.0 T magnetic field which acts at a right angle to its motion. If the particle moves in a circle of radius 0.20 m at a speed of 5.0 m/s, what is the magnitude of the charge on the particle?arrow_forwardAn experimental magnetically levitated train is supported by magnetic repulsion forces exerted in a direction normal to the tracks. Motion of the train transverse to the tracks is prevented by lateral supports. Suppose that the 25,000-kg train is traveling at 25 m/s on a circular segment of a track of radius R = 150 m, and the bank angle of the track is 40°, what force must the magnetic levitation system exert to support the train, and what total force is exerted by the lateral supports?arrow_forward
- A particle with charge q and speed v enters a magnetic field of strength B, moving in a plane perpendicular to the field. A second particle with 7 times the charge and 4.1 times the speed, traveling in the same plane, enters the same field, but in the meantime the field has changed in magnitude by a factor of 0.9. Find the magnitude of the magnetic force F2 exerted on the second particle in terms of the magnitude force F₁ exerted on the first particle and supply the missing numerical factor below. F₂=L _)F₁arrow_forwardElectrons and protons travel from the Sun to the Earth at a typical velocity of 3.88 x 10 m/s in the positive x-direction. Thousands of miles from Earth, they interact with Earth's magnetic field of magnitude 2.93 x 10-8 T in the positive z-direction. Find the magnitude and direction of the magnetic force on a proton. Find the magnitude and direction of the magnetic force on an electron. HINT (a) magnitude of the magnetic force on a proton (in N) N (b) direction of the magnetic force on a proton O+x-direction O-x-direction O+y-direction O-y-direction O +z-direction -z-direction (c) magnitude of the magnetic force on an electron (in N) N (d) direction of the magnetic force on an electron +x-direction -x-direction O +y-direction O-y-direction O +z-direction O -z-direction 000arrow_forwardAn iron bolt of mass 58.5 g hangs from a string 37.5 cm long. The top end of the string is fixed. Without touching it, a magnet attracts the bolt so that it remains stationary, but is displaced horizontally 25.0 cm to the right from the previously vertical line of the string. Draw a free-body diagram of the bolt. Find the tension in the string. Find the magnetic force on the bolt. magnitude directionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY