Concept explainers
(a)
The direction of the magnetic force exerted on wire segment
(a)
Answer to Problem 26P
The direction of the force is in the positive
Explanation of Solution
The Fleming left hand rule stats that, the thumb points in the direction of the force, the index finger towards the direction of the magnetic field, and the middle finger in the direction of the current.
Thus, by using thus rule, if the middle finger shows in the direction of the current in segment
Conclusion:
Therefore, the direction of the force is in the positive
(b)
The direction of the torque associated with the above force about the axis through origin.
(b)
Answer to Problem 26P
The direction of the torque associated with the force on the segment
Explanation of Solution
Write the expression for torque associated with the force,
Here,
Conclusion:
Substitute
The torque related to this expression is negative of unit vector
(c)
The direction of the magnetic force exerted on wire segment
(c)
Answer to Problem 26P
The direction of the magnetic force excreted on the segment is in the negative
Explanation of Solution
Write the expression for the magnetic field in a wire,
Here,
Conclusion:
Substitute
From the above expression it can understood that the magnetic force in the negative of the unit vector
(d)
The direction of the torque associated with the force on the segment
(d)
Answer to Problem 26P
The direction of the torque associated with the force on the segment
Explanation of Solution
Write the expression for torque associated with the force,
Here,
Conclusion:
Substitute
The torque related to this expression is negative of unit vector
(e)
Whether the force examined in part (a) and (c) combine to cause the loop to rotate around the
(e)
Answer to Problem 26P
The magnetic force cannot rotate in the loop.
Explanation of Solution
As the force examined on the segment
Therefore, the magnetic force cannot rotate in the loop.
Conclusion:
Therefore, the magnetic force cannot rotate in the loop.
(f)
Whether the force affect the motion of the loop.
(f)
Answer to Problem 26P
The magnetic force will only rotate the loop and will not affect the motion of the loop.
Explanation of Solution
Write the expression for the magnetic field in a wire,
Here,
According to the expression (I) if the magnetic field, current and the length is constant then its magnetic force will be constant. Here, the magnetic field, the current, and the length of the loop is constant, therefore the magnetic force is constant. Hence this magnetic force will only rotate the loop and will not affect the motion of the loop.
Conclusion:
Therefore, the magnetic force will only rotate the loop and will not affect the motion of the loop.
(g)
The direction of the magnetic force exerted on the segment
(g)
Answer to Problem 26P
The magnetic force will on segment
Explanation of Solution
Write the expression for the magnetic field in a wire,
Here,
Conclusion:
Substitute
From the above expression it can understood that the magnetic force in the negative of the unit vector
Conclusion:
The magnetic force will on segment
(h)
The direction of the torque associated with the force on the segment
(h)
Answer to Problem 26P
The direction of the torque associated with the force on the segment
Explanation of Solution
Write the expression for torque associated with the force,
Here,
Conclusion:
Substitute
The torque related to this expression is positive of unit vector
(i)
The direction of the torque on the segment
(i)
Answer to Problem 26P
The direction of the torque associated segment
Explanation of Solution
Write the expression for torque associated with the force,
Here,
Conclusion:
The segment
The zero distance from the center will makes the expression (I) zero.
Therefore, the direction of the torque associated segment
(j)
Whether the loop located itself clockwise or anticlockwise.
(j)
Answer to Problem 26P
The loop will rotate in the anticlockwise direction.
Explanation of Solution
As the torque on the segment
Thus, the net torque is in the direction along the positive
Conclusion:
There, the loop will rotate in the anticlockwise direction.
(k)
The magnitude of the magnetic moment of the loop.
(k)
Answer to Problem 26P
The magnitude of the magnetic moment of the loop is
Explanation of Solution
Write the formula to calculate the magnetic moment of the loop,
Here,
Conclusion:
Substitute
The magnitude of the magnetic moment of the loop is
(l)
The angle between the magnetic moment vector and magnetic field.
(l)
Answer to Problem 26P
The angle between the magnetic moment vector and magnetic field is
Explanation of Solution
It is given that the current if it is flowing in clockwise direction, by right hand thumb rule, the finger curled will point in the direction of the current, the thumb in the direction of the magnetic field, thus the direction of the magnetic moment in downwards.
Thus it is along the negative
Conclusion:
Therefore, the angle between the magnetic moment vector and magnetic field is
(m)
The torque on the loop using the results of part (k) and (l)
(m)
Answer to Problem 26P
The torque on the loop is
Explanation of Solution
Formula to calculate the torque in current carrying wire,
Here,
Conclusion:
Substitute
The torque on the loop is
Want to see more full solutions like this?
Chapter 22 Solutions
Principles of Physics: A Calculus-Based Text
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning