Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 23P
A wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0°, (b) 90.0°, and (c) 120°.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the circuit shown in the figure below. (Let R = 12.0 (2.)
25.0 V
10.0
www
10.0 Ω
b
www
5.00 Ω
w
R
5.00 Ω
i
(a) Find the current in the 12.0-0 resistor.
1.95
×
This is the total current through the battery. Does all of this go through R? A
(b) Find the potential difference between points a and b.
1.72
×
How does the potential difference between points a and b relate to the current through resistor R? V
3.90 ... CP A rocket designed to place small payloads into orbit
is carried to an altitude of 12.0 km above sea level by a converted
airliner. When the airliner is flying in a straight line at a constant
speed of 850 km/h, the rocket is dropped. After the drop, the air-
liner maintains the same altitude and speed and continues to fly in
a straight line. The rocket falls for a brief time, after which its
rocket motor turns on. Once its rocket motor is on, the combined
effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of 30.0° above the hori-
zontal. For reasons of safety, the rocket should be at least 1.00 km
in front of the airliner when it climbs through the airliner's alti-
tude. Your job is to determine the minimum time that the rocket
must fall before its engine starts. You can ignore air resistance.
Your answer should include (i) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several…
1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity
c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°.
Outside the pipe the temperature is fixed at Tout = 15 °C.
If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature
of the fluid at the end of the pipe? (Answer: 83 °C)
please I need to show All work problems step by step
Chapter 22 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 22.2 - An electron moves in the plane of this paper...Ch. 22.3 - A charged particle is moving perpendicular to a...Ch. 22.5 - A wire carries current in the plane of this paper...Ch. 22.7 - Consider the magnetic field due to the current in...Ch. 22.8 - Prob. 22.5QQCh. 22.9 - Figure 22.30 (Quick Quiz 22.6) Four closed paths...Ch. 22.9 - Prob. 22.7QQCh. 22.10 - Consider a solenoid that is very long compared...Ch. 22 - Prob. 1OQCh. 22 - What creates a magnetic field? More than one...
Ch. 22 - A charged particle is traveling through a uniform...Ch. 22 - A proton moving horizontally enters a region where...Ch. 22 - Two long, parallel wires each carry the same...Ch. 22 - Two long, straight wires cross each other at a...Ch. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Answer each question yes or no. (a) Is it possible...Ch. 22 - A long, straight wire carries a current I (Fig....Ch. 22 - A thin copper rod 1.00 m long has a mass of 50.0...Ch. 22 - A magnetic field exerts a torque on each of the...Ch. 22 - Two long, parallel wires carry currents of 20.0 A...Ch. 22 - Prob. 14OQCh. 22 - A long solenoid with closely spaced turns carries...Ch. 22 - Solenoid A has length L and N turns, solenoid B...Ch. 22 - Prob. 1CQCh. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Prob. 5CQCh. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - Imagine you have a compass whose needle can rotate...Ch. 22 - Prob. 9CQCh. 22 - Can a constant magnetic field set into motion an...Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A proton travels with a speed of 3.00 106 m/s at...Ch. 22 - Determine the initial direction of the deflection...Ch. 22 - An electron is accelerated through 2.40 103 V...Ch. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Review. An electron moves in a circular path...Ch. 22 - A cosmic-ray proton in interstellar space has an...Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Consider the mass spectrometer shown schematically...Ch. 22 - Prob. 16PCh. 22 - The picture tube in an old black-and-white...Ch. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - In Figure P22.20, the cube is 40.0 cm on each...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - A wire 2.80 m in length carries a current of 5.00...Ch. 22 - A current loop with magnetic dipole moment is...Ch. 22 - A rectangular coil consists of N = 100 closely...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Calculate the magnitude of the magnetic field at a...Ch. 22 - An infinitely long wire carrying a current I is...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - One long wire carries current 30.0 A to the left...Ch. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - 3. In Niels Bohr’s 1913 model of the hydrogen...Ch. 22 - Review. In studies of the possibility of migrating...Ch. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - In Figure P22.43, the current in the long,...Ch. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - A packed bundle of 100 long, straight, insulated...Ch. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - A long, straight wire lies on a horizontal table...Ch. 22 - Prob. 54PCh. 22 - A single-turn square loop of wire, 2.00 cm on each...Ch. 22 - Prob. 56PCh. 22 - A long solenoid that has 1 000 turns uniformly...Ch. 22 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 22 - Prob. 59PCh. 22 - In Niels Bohr’s 1913 model of the hydrogen atom,...Ch. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - The Hall effect finds important application in the...Ch. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Assume the region to the right of a certain plane...Ch. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Review. Rail guns have been suggested for...Ch. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.arrow_forwardNo chatgpt pls will upvotearrow_forward8.114 CALC A Variable-Mass Raindrop. In a rocket-propul- sion problem the mass is variable. Another such problem is a rain- drop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is dp dv dm Fext = + dt dt dt = Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m kx, where k is a constant, and dm/dt = kv. This gives, since Fext = mg, dv mg = m + v(kv) dt Or, dividing by k, dv xgx + v² dt This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of…arrow_forward
- 8.13 A 2.00-kg stone is sliding Figure E8.13 F (kN) to the right on a frictionless hori- zontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of 2.50 time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on t (ms) 15.0 16.0 the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.arrow_forwardPlease calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potentialarrow_forwardIf an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?arrow_forward
- Please solve this questionarrow_forwardPlease solvearrow_forwardQuestions 68-70 Four hundred millilitres (mL) of a strong brine solution at room temperature was poured into a measuring cylinder (Figure 1). A piece of ice of mass 100 g was then gently placed in the brine solution and allowed to float freely (Figure 2). Changes in the surface level of the liquid in the cylinder were then observed until all the ice had melted. Assume that the densities of water, ice and the brine solution are 1000 kg m-3, 900 kg m3 and 1100 kg m3, respectively. 68 Figure 1 400 400 Figure 2 1m² = 1x10 mL After the ice was placed in the brine solution and before any of it had melted, the level of the brine solution was closest to 485 mL. B 490 mL. C 495 mL. Displaced volume by ice. D 500 mL. weight of ice 69 The level of the brine solution after all the ice had melted was A 490 mL B 495 mL D 1100kg/m² = 909 xious mis 70 Suppose water of the same volume and temperature had been used instead of the brine solution. In this case, by the time all the ice had melted, the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY