
College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 34PE
(a) What is the force per meter on a lightning bolt at the equator that carries 20,000 A perpendicular to the Earth's
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?
Consider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?
A roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?
Chapter 22 Solutions
College Physics
Ch. 22 - Volcanic and other such activity at the...Ch. 22 - Explain why the magnetic field would not be unique...Ch. 22 - List the ways in which magnetic field lines and...Ch. 22 - Noting that the magnetic field lines of a bar...Ch. 22 - Is the Earth's magnetic field parallel to the...Ch. 22 - If a charged particle moves in a straight line...Ch. 22 - How can the motion of a charged particle be used...Ch. 22 - High-velocity charged particles can damage...Ch. 22 - If a cosmic ray proton approaches the Earth from...Ch. 22 - What are the signs of the charges on the particles...
Ch. 22 - Which of the particles in Figure 22.47 has the...Ch. 22 - Which of the particles in Figure 22.47 has the...Ch. 22 - While operating, a high-precision TV monitor is...Ch. 22 - Discuss how the Hall effect could be used to...Ch. 22 - Draw a sketch of the situation in Figure 22.30...Ch. 22 - Verify than the direction of the line force in an...Ch. 22 - Why would a magnetohydrodynamic drive work better...Ch. 22 - Which is more likely to interfere with compass...Ch. 22 - Draw a diagram and use RHR-l to show that the...Ch. 22 - Make a drawing and use RHR—2 to find the direction...Ch. 22 - Is the force attractive or repulsive between the...Ch. 22 - It you have three parallel wires in the same...Ch. 22 - Suppose two long straight wires run perpendicular...Ch. 22 - Use the right hand rules to show that the force...Ch. 22 - If one of the loops in Figure 22.49 is titled...Ch. 22 - Electric field lines can be shielded by me Faraday...Ch. 22 - Measurements at the weak and ?uctuating magnetic...Ch. 22 - Discuss the possibility that a Hall voltage would...Ch. 22 - A patient in an MRI unit turns his head quickly to...Ch. 22 - You are told that in a certain region there is...Ch. 22 - An example of magnetohydrodynamics (MHD) comes...Ch. 22 - Draw gravitational field lines between 2 masses,...Ch. 22 - What is the direction of the magnetic force on a...Ch. 22 - Repeal Exercise 22.1 for a negative charge.Ch. 22 - What is the direction of the velocity of a...Ch. 22 - Repeal Exercise 22.3 for a positive charge.Ch. 22 - What is the direction of the magnetic field that...Ch. 22 - Repeal Exercise 22.5 for a negative charge.Ch. 22 - What is the maximum force on an aluminum rod with...Ch. 22 - (a) Aircraft sometimes acquire small static...Ch. 22 - (a) A cosmic ray proton moving toward the Earth at...Ch. 22 - An electron moving at 4.00103m/s in a 1.25T...Ch. 22 - (a) A physicist performing a sensitive measurement...Ch. 22 - A cosmic ray electron moves at 7.50106m/s...Ch. 22 - A proton moves at 7.50107m/s perpendicular to a...Ch. 22 - (a) Viewers of Star Trek hear of an antimatter...Ch. 22 - (a) An oxygen16 ion with a mass at 2.661026kg...Ch. 22 - What radius circular path does an electron travel...Ch. 22 - A velocity selector in a mass spectrometer uses a...Ch. 22 - An electron in a TV CRT moves with a speed at...Ch. 22 - (a) At what speed will a proton move in a circular...Ch. 22 - A mass spectrometer is being used to separate...Ch. 22 - (a) Triply charged uranium-235 and uranium-238...Ch. 22 - A large water main is 2.50 m in diameter and the...Ch. 22 - What Hall voltage is produced by a 0.200T field...Ch. 22 - (a) What is the speed of a supersonic aircraft...Ch. 22 - A nonmechanical water meter could utilize the Hall...Ch. 22 - Calculate the Hall voltage induced on a patient’s...Ch. 22 - A Hall probe calibrated to read 1.00V when placed...Ch. 22 - Using information in Example 20.6, what would the...Ch. 22 - Show that the Hall voltage across wires made of...Ch. 22 - A patient with a pacemaker is mistakenly being...Ch. 22 - What is the direction of the magnetic force on the...Ch. 22 - What is the direction of a current that...Ch. 22 - What is the direction of the magnetic field that...Ch. 22 - (a) What is the force per meter on a lightning...Ch. 22 - (a) A DC power line for a light-rail system...Ch. 22 - What force is exerted on the water in an MHD drive...Ch. 22 - A wire carrying a 30.0-A current passes between...Ch. 22 - (a) A 0.750-m-long section of cable carrying...Ch. 22 - (a) What is the angle between a wire carrying an...Ch. 22 - The force on the rectangular loop of wire in the...Ch. 22 - (a) By how many percent is the torque of a motor...Ch. 22 - (a) What is me maximum torque on a 150Turn square...Ch. 22 - Find the current through a loop needed to create a...Ch. 22 - Calculate the magnetic field strength needed on a...Ch. 22 - Since the equation for torque on a...Ch. 22 - (a) At what angle (is the torque on a current loop...Ch. 22 - A proton has a magnetic field due to its spin on...Ch. 22 - (a) A 200Turn circular loop of radius 50.0 cm is...Ch. 22 - Repeat Exercise 22.41, but with the loop lying...Ch. 22 - (a) The hot and neutral wires supplying DC power...Ch. 22 - The force per meter between the two wires of a...Ch. 22 - A 2.50m segment of wire supplying current to the...Ch. 22 - The wire carrying 400 A to The motor of a commuter...Ch. 22 - An AC appliance cord has its hot and neutral wires...Ch. 22 - Figure 22.57 shows a long straight wire near a...Ch. 22 - Find the direction and magnitude of the force that...Ch. 22 - Find the direction and magnitude of the force that...Ch. 22 - Indicate whether the magnetic field created in...Ch. 22 - What are the directions of the fields in the...Ch. 22 - What are the directions of the currents in the...Ch. 22 - To see why an MRI utilizes iron to increase the...Ch. 22 - Inside a motor, 30.0 A passes through a 250-turn...Ch. 22 - Nonnuclear submarines use batteries for power when...Ch. 22 - How strong is the magnetic field inside a solenoid...Ch. 22 - What current is needed in the solenoid described...Ch. 22 - How far from the starter cable of a car, carrying...Ch. 22 - Measurements affect the system being measured,...Ch. 22 - Figure 22.62 shows a long straight wire just...Ch. 22 - Find the magnitude and direction of the magnetic...Ch. 22 - Find the magnitude and direction of the magnetic...Ch. 22 - What current is needed in the top wire in Figure...Ch. 22 - Calculate the size of the magnetic field 20 m...Ch. 22 - Integrated Concepts A pendulum is set up so that...Ch. 22 - Integrated Concepts (a) What voltage will...Ch. 22 - Integrated Concepts Find the radius of curvature...Ch. 22 - Integrated Concepts To construct a nonmechanical...Ch. 22 - Integrated Concepts (a) Using the values given for...Ch. 22 - Integrated Concepts (a) Calculate the maximum...Ch. 22 - Integrated Concepts A current balance used to...Ch. 22 - Integrated Concepts (a) Show that the period of...Ch. 22 - Integrated Concepts A cyclotron accelerates...Ch. 22 - Integrated Concepts (a) A 0.140-kg baseball,...Ch. 22 - Integrated Concepts (a) What is the direction of...Ch. 22 - Integrated Concepts One long straight wire is to...Ch. 22 - Unreasonable Results (a) Find the charge on a...Ch. 22 - Unreasonable Results A charged particle having...Ch. 22 - Unreasonable Results An inventor wants to generate...Ch. 22 - Unreasonable Results Frustrated by the small Hall...Ch. 22 - Unreasonable Results A surveyor 100 m from a long...Ch. 22 - Construct Your Own Problem Consider a mass...Ch. 22 - Construct Your Own Problem Consider using the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
20. For each pedigree shown,
a. Identify which simple pattern of hereditary trans-mission (autosomal dominant,...
Genetic Analysis: An Integrated Approach (3rd Edition)
4. How do gross anatomy and microscopic anatomy differ?
Human Anatomy & Physiology (2nd Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Q14. A cube measures 2.5cm on each edge and has a mass of 66.9g. Calculate the density of the material that com...
Introductory Chemistry (6th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
- Consider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forward
- Three carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forwardA girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forwardTwo objects of masses m₁ 0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.) m/s V1 V2= m1 m/s k m2 a す。 k m2 m1 barrow_forward
- Sand from a stationary hopper falls on a moving conveyor belt at the rate of 4.90 kg/s as shown in the figure below. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.710 m/s under the action of a constant horizontal external force F by the motor that drives the belt. Fext i (a) Find the sand's rate of change of momentum in the horizontal direction. (b) Find the force of friction exerted by the belt on the sand. (c) Find the external force ext' (d) Find the work done by F in 1 s. ext (e) Find the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. ext suppliedarrow_forwardAn unstable atomic nucleus of mass 1.84 × 10-26 kg initially at rest disintegrates into three particles. One of the particles, of mass 5.14 × 10-27 kg, moves in the y direction with a speed of 6.00 × 106 m/s. Another particle, of mass 8.46 × 10-27 kg, moves in the x direction with a speed of 4.00 x 106 m/s. (a) Find the velocity of the third particle. |Î + i) m/s (b) Find the total kinetic energy increase in the process. ]arrow_forwardTwo gliders are set in motion on an air track. A light spring of force constant k is attached to the back end of the second glider. As shown in the figure below, the first glider, of mass m₁, moves to the right with a speed V₁, and the second glider, of mass m₂, moves more slowly to the right with a speed, V2. VI m2 i When m₁ collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of V1, V2, m₁, m2, and k, find the following. (Use any variable or symbol stated above as necessary.) (a) speed v at maximum compression V = (b) the maximum compression Xmax Xmax = (c) the speed of each glider after m₁ V1f = has lost contact with the spring (Use any variable or symbol stated above as necessary.) V2farrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning


Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY