Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 82P
To determine
To find:
a) The drift velocity of charge carriers
b) The number density of charge carriers
c) Show on a diagram the polarity of the Hall potential difference with assumed current and magnetic field directions, assuming also that the charge carriers are electrons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Hall effect can be used to determine the density of mobile electrons in a conductor. A thin strip of the material being
investigated is immersed in a magnetic field and oriented so that its surface is perpendicular to the field. In a particular
measurement, the magnetic field strength was 0.735 T, the strip was 0.101 mm thick, the current along the strip was 2.95 A, and
the Hall voltage between the strip's edges was 2.95 mV.
Find the density n of mobile electrons in the material. The elementary charge is 1.602 x 10-19 C.
1.56 x104
n 3=
-3
Incorrect
The Hall effect can be used to determine the density of mobile electrons in a conductor. A thin strip of the material being
investigated is immersed in a magnetic field and oriented so that its surface is perpendicular to the field. In a particular
measurement, the magnetic field strength was 0.723 T, the strip was 0.107 mm thick, the current along the strip was
2.83 A, and the Hall voltage between the strip's edges was 2.73 mV.
Find the density n of mobile electrons in the material. The elementary charge is 1.602 x 10-1° C.
n =
-3
m
A velocity selector consists of electric and magnetic fields described by the expressions
E = E k
and
B = B ĵ,
with B = 10.0 mT. Find the value of E (in kV/m) such that a 840 eV electron moving in the negative x-direction is undeflected.
kV/m
(b)
What If? For the value of E found in part (a), what would the kinetic energy of a proton have to be (in MeV) for it to move undeflected in the negative x-direction?
MeV
A cyclotron designed to accelerate protons has a magnetic field of magnitude 0.640 T over a region of radius 1.80 m.
(a) What is the cyclotron frequency?
rad/s
(b) What is the maximum speed acquired by the protons?
m/s
Chapter 28 Solutions
Fundamentals of Physics Extended
Ch. 28 - Prob. 1QCh. 28 - Prob. 2QCh. 28 - Prob. 3QCh. 28 - Prob. 4QCh. 28 - In Module 28-2, we discussed a charged particle...Ch. 28 - Figure 28-26 shows crossed uniform electic and...Ch. 28 - Figure 28-27 shows the path of an electron that...Ch. 28 - Figure 28-28 shows the path of an electron in a...Ch. 28 - a In Checkpoint 5, if the dipole moment is rotated...Ch. 28 - Particle round about. Figure 28-29 shows 11 paths...
Ch. 28 - Prob. 11QCh. 28 - Prob. 12QCh. 28 - Prob. 1PCh. 28 - A particle of mass 10 g and charge 80 C moves...Ch. 28 - An electron that has an instantaneous velocity of...Ch. 28 - An alpa particle travels at a velocity of...Ch. 28 - GO An electron moves through a unifrom magnetic...Ch. 28 - GO A proton moves through a uniform magnetic field...Ch. 28 - Prob. 7PCh. 28 - An electric field of 1.50 kV/m and a perpendicular...Ch. 28 - ILW In Fig. 28-32, an electron accelerated from...Ch. 28 - A proton travels through uniform magnetic and...Ch. 28 - Prob. 11PCh. 28 - Go At time t1 an electron is sent along the...Ch. 28 - Prob. 13PCh. 28 - A metal strip 6.50 cm long, 0.850 cm wide, and...Ch. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - An alpha particle can be produced in certain...Ch. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - SSM An electron of kinetic energy 1.20 keV circles...Ch. 28 - In a nuclear experiment a proton with kinetic...Ch. 28 - What uniform magnetic field, applied perpendicular...Ch. 28 - An electron is accelerated from rest by a...Ch. 28 - a Find the frequency of revolution of an electron...Ch. 28 - Prob. 26PCh. 28 - A mass spectrometer Fig. 28-12 is used to separate...Ch. 28 - A particle undergoes uniform circular motion of...Ch. 28 - An electron follows a helical path in a uniform...Ch. 28 - GO In Fig. 28-40. an electron with an initial...Ch. 28 - A particular type of fundamental particle decays...Ch. 28 - An source injects an electron of speed v = 1.5 ...Ch. 28 - Prob. 33PCh. 28 - An electron follows a helical path in a uniform...Ch. 28 - A proton circulates in a cyclotron, beginning...Ch. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - In a certain cyclotron a proton moves in a circle...Ch. 28 - SSM A horizontal power line carries a current of...Ch. 28 - A wire 1.80 m long carries a current of 13.0 A and...Ch. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - A single-turn current loop, carrying a current of...Ch. 28 - Prob. 44PCh. 28 - ACA /ACwire 50.0 cm long carries a 0.500 A current...Ch. 28 - In Fig. 28-44, a metal wire of mass m = 24.1 mg...Ch. 28 - GO A 1.0 kg copper rod rests on two horizontal...Ch. 28 - GO A long, rigid conductor, lying along an x axis,...Ch. 28 - Prob. 49PCh. 28 - An electron moves in a circle of radius r = 5.29 ...Ch. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - A magnetic dipole with a dipole moment of...Ch. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - A Current loop, carrying a current of 5.0 A, is in...Ch. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - A circular loop of wire having a radius of 8.0 cm...Ch. 28 - GO Figure 28-52 gives the orientation energy U of...Ch. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - A stationary circular wall clock has a face with a...Ch. 28 - A wire lying along a y axis from y = 0 to y =...Ch. 28 - Atom 1 of mass 35 u and atom 2 of mass 37 u are...Ch. 28 - Prob. 70PCh. 28 - Physicist S. A. Goudsmit devised a method for...Ch. 28 - A beam of electrons whose kinetic energy is K...Ch. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - In Fig. 28-8, show that the ratio of the Hall...Ch. 28 - Prob. 79PCh. 28 - An electron is moving at 7.20 106 m/s in a...Ch. 28 - Prob. 81PCh. 28 - Prob. 82PCh. 28 - Prob. 83PCh. 28 - A write lying along an x axis from x = 0 to x =...Ch. 28 - At one instant, m/s is the velocity of a proton in...Ch. 28 - An electron has velocity km/s as it enters a...Ch. 28 - Prob. 87PCh. 28 - Prob. 88PCh. 28 - In Fig. 28-58, an electron of mass m, charge e,...Ch. 28 - Prob. 90PCh. 28 - Prob. 91PCh. 28 - An electron that is moving through a uniform...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A strip of copper is placed in a uniform magnetic field of magnitude 2.5 T. The Hall electric field is measured to be 1.5103V/m (a) What is the drift speed of the conduction electrons? (b) Assuming that n =8.01028 elections per cubic meter and that the cross-sectional area of the strip is 5.0106m2 , calculate the current in the ship, (c) What is the Hall coefficient 1/nq?arrow_forwardThe Hall effect is to be used to find the density of charge carriers in an unknown material. A Hall voltage 40 V for 3-A current is observed in a 3-T magnetic field far a rectangular sample with length 2 cm, width 1.5 cm, and height 0.4 cm, Determine the density of the charge carriers.arrow_forwardQ#02. A strip of copper 150um thick and 45cm wide is placed in a uniform magnetic field B of magnitude 0.85T, with B perpendicular to the strip. A current i = 2.3 mA is then sent to the strip such that a Hall potential difference V appears across the width of the strip. Calculate V. (the number of charge carriers per unit volume for copper is 8.47×108electrons/m³).arrow_forward
- Given: B = 5 * 10-5 T ẑ; σ = 4 (Ohm-meters)-1 (conductivity) a) Assume that seawater is moving at a constant velocity v = v0 ŷ and that the Earth’s magnetic field is along the ẑ-direction. Calculate the electric current density J produced by the magnetic force. Hint: first compute the force per unit charge, F/q, and then use the relationship J = σ(F/q). b) Derive the equation of motion of a cylindrical differential volume element of base area δA and height δh parallelto the direction of J. Assume that seawater has a known volumetric mass density ρ. Show that this equation implies that the velocity satisfies the following differential equation:dvy/dt = vy/τwhere τ is a constant that you should write in terms of B, σ, and ρ.arrow_forwardAn infinitely long wire carries a current of I = 150 A. Randomized VariablesI = 150 A Part (a) Consider a circle with a radius r and centered on the wire. Determine the magnitude of the magnetic field B at points along the circle in terms of I and r. Part (b) If r = 0.14 m, calculate the numerical value of B in tesla.arrow_forwardcan you please ans (d) (e) & (f)?arrow_forward
- Please Asaparrow_forwardIn the figure, an electron accelerated from rest through potential difference V₁-1.33 kV enters the gap between two parallel plates having separation d = 24.1 mm and potential difference V₂= 175 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? LI Number(i î+ i Ĵ+ [4]1₂ d V₂ i k) Units <arrow_forwardIn the figure, an electron accelerated from rest through potential difference V1=1.26 kV enters the gap between two parallel plates having separation d = 19.6 mm and potential difference V2= 52.4 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In UNIT-VECTOR NOTATION, what uniform magnetic field allows the electron to travel in a straight line in the gap?arrow_forward
- A 0.50 T magnetic field is applied to a paramagnetic gas whose atoms have an intrinsic magnetic dipole moment of 1.0* 10^23 J/T. At what temperature will the mean kinetic energy of translation of the atoms equal the energy required to reverse such a dipole end for end in this magnetic field?arrow_forwardIn Fig. 2, an electron with an initial kinetic energy of 5.0 keV enters region 1 at time t= 0. That region contains a uniform magnetic field directed into the page, with magnitude 0.010 T. The electron goes through a half circle and then exits region 1, headed toward region 2 across a gap of 25.0 cm. There is an electric potential diference AV= 2000 V across the gap, with a polarity such that the electron's speed increases uniformly as it traverses the gap. Region 2 contains a uniform magnetic field directed out of the page, with magnitude 0.020 T. The elctron goes through a half circle and then leaves region 2. At what time t does it leave? (e= 1.6 × 10-19 C, mẹ = 9.11 × 10-3' kg) Region 1 I av AV Region 2 O B2 Fig. 2arrow_forwardIn the figure, an electron accelerated from rest through potential difference V1=1.26 kV enters the gap between two parallel plates having separation d = 19.6 mm and potential difference V2= 52.4 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? I need this in units of mT.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning