Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 78AP
(a)
To determine
The graph of
(b)
To determine
The value of time constant and the capacitance in the circuit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. AVbattery = 24 V, C =
3.0 μF, and R = 2.0 Q. At sometime after the switch is closed, the voltage across the resistor is measured to be 16
V. What is the charge on the capacitor at this time, in µC?
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not
include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the
question statement.
For the circuit shown in the figure, C = 12 µF and R = 8.5 MQ. Initially the switch S is open with the capacitor charged to a voltage of 80 V. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor
when the current in the circuit is 3.3 HA?
Hint: Use the current discharge equation to find the time. Then put that time into the discharge function for the charge on the capacitor.
O 340 uc
Ο 480 μc
O 620 uC
Ο 700 μC
O 350 uc
In (Figure 1), the total resistance is 12.0 kΩ , and the battery's emf is 26.0 V . The time constant is measured to be 14.0 μs .
Calculate the total capacitance of the circuit.
Calculate the time it takes for the voltage across the capacitor to reach 15.0 VV after the switch is closed.
Chapter 28 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 28.1 - To maximize the percentage of the power from the...Ch. 28.2 - With the switch in the circuit of Figure 27.4a...Ch. 28.2 - With the switch in the circuit of Figure 27.6a...Ch. 28.2 - Prob. 28.4QQCh. 28.4 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQ
Ch. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Why is it possible for a bird to sit on a...Ch. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Is the direction of current in a battery always...Ch. 28 - Prob. 10CQCh. 28 - Prob. 1PCh. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and an...Ch. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - The following equations describe an electric...Ch. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54APCh. 28 - Prob. 55APCh. 28 - Prob. 56APCh. 28 - Prob. 57APCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 59APCh. 28 - Prob. 60APCh. 28 - When two unknown resistors are connected in series...Ch. 28 - Prob. 62APCh. 28 - Prob. 63APCh. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - Prob. 65APCh. 28 - Prob. 66APCh. 28 - Prob. 67APCh. 28 - Prob. 68APCh. 28 - Prob. 69APCh. 28 - Prob. 70APCh. 28 - Prob. 71APCh. 28 - Prob. 72APCh. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - Prob. 75APCh. 28 - Prob. 76APCh. 28 - Prob. 77APCh. 28 - Prob. 78APCh. 28 - Prob. 79APCh. 28 - Prob. 80APCh. 28 - Prob. 81APCh. 28 - Prob. 82CPCh. 28 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The circuit shown in Figure P28.78 is set up in the laboratory to measure an unknown capacitance C in series with a resistance R = 10.0 M powered by a battery whose emf is 6.19 V. The data given in the table are the measured voltages across the capacitor as a function of lime, where t = 0 represents the instant at which the switch is thrown to position b. (a) Construct a graph of In (/v) versus I and perform a linear least-squares fit to the data, (b) From the slope of your graph, obtain a value for the time constant of the circuit and a value for the capacitance. v(V) t(s) In (/v) 6.19 0 5.56 4.87 4.93 11.1 4.34 19.4 3.72 30.8 3.09 46.6 2.47 67.3 1.83 102.2arrow_forwardA capacitor with initial charge Q0 is connected across a resistor R at time t = 0. The separation between the plates of the capacitor changes as d = d0/(1 + t) for 0 t 1 s. Find an expression for the voltage drop across the capacitor as a function of time.arrow_forward(a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious bums?arrow_forward
- Three capacitors with capacitances C1 = C, C2 = 3C, and C3 = 5C, are in a circuit as shown. The source has potential difference ΔV = 17 V. It is observed that one plate of the capacitor C3 has a charge of q = 5 mC. Write an expression for the capacitance C (that is, the capacitance of the first capacitor), in terms of q and ΔV.arrow_forwardIn physics, the half-life is often used to characterize exponential decay of physical quantities such as radioactive substances. The half-life is the time required for the quantity to decay to half of its initial value. The time constant for the voltage on a capacitance discharging through a resistance is τ=RC. Find an expression for the half-life of the voltage in terms of R and C.arrow_forwardThe capacitor in the circuit shown is fully charged by a 24 V battery. The switch is closed at t = 0. At sometime after the switch is closed, the voltage across the capacitor is measured to be 10 V. What is the current in the circuit at this time, in Ampere? C = 3.0 µF, and R = 2.0 02. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Cilarrow_forward
- EMF = Vo = 6 volts. and C = 5 μF Calculate the theoretical value of the charge (q) in the capacitor during charging at t = RC. Use equation 3.arrow_forwardFor the circuit shown in Fig. Q1(a), the capacitor is initially charged to 3.5 V with polarity shown. compute the time constant, T of the circuit. I = 5.5 mA ↑ R₁ R₂ 2.6 ΚΩ 18.7 ΚΩ Fig. Ql(a) S C = 3.3 uF + 3.5 Varrow_forwardIn the circuit below the value of the resistance 14 Ω and the value of the capacitance is 2.0 µF. The voltage of the battery is 50 V. The capacitor is initially uncharged. Sometime after the switch is closed, the current in the circuit is measured to be 1.1 A. At this time, what is the charge on the capacitor, in µC? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forward
- The figure below shows a capacitor, with capacitance C = 8.22 UF, and a resistor, with resistance R = 5.98 MN, connected in series to a battery, with E = 29.0 V. The circuit has a switch, which is initially open. R (a) What is the circuit's time constant (in seconds)? (b) What is the maximum charge (in µC) on the capacitor after the switch is closed? (c) What is the current (in pA) through the resistor 10.0 s after the switch is closed? HAarrow_forwardFrom Kirchoff's law, the current I in an RC (resistor-capacitor) circuit during discharging obeys the equation R ²+²=C² = ( di(t) 1(t) dt a. Find I (t). b. For a capacitance of 10,000 uF charged to 100 V and discharging through a resistance of 1 m2, find the current I for t = 0 and for t = 100 sec. Note: The initial voltage is IR or Q/C, where I = dQ/dt.arrow_forwardThe figure below shows a capacitor, with capacitance C = 7.22 PF, and a resistor, with resistance R = 4.23 MQ, connected in series to a battery, with E = 28.0 V. The circuit has a switch, which is initially open. R (a) What is the circuit's time constant (in seconds)? (b) What is the maximum charge (in µc) on the capacitor after the switch is closed? (c) What is the current (in HA) through the resistor 10.0 s after the switch is closed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY