An ideal voltmeter connected across a certain fresh 9-V battery reads 9.30 V, and an ideal ammeter briefly connected across the same battery reads 3.70 A. We say the battery has an open-circuit voltage of 9.30 V and a short-circuit current of 3.70 A. Model the battery as a source of emf ε in series with an internal resistance r as in Figure 28.1a. Determine both (a) ε and (b) r. An experimenter connects two of these identical batteries together as shown in Figure P28.74. Find (c) the open-circuit voltage and (d) the short-circuit current of the pair of connected batteries. (e) The experimenter connects a 12.0-Ω resistor between the exposed terminals of the connected batteries. Find the current in the resistor. (f) Find the power delivered to the resistor. (g) The experimenter connects a second identical resistor in parallel with the first. Find the power delivered to each resistor. (h) Because the same pair of batteries is connected across both resistors as was connected across the single resistor, why is the power in part (g) not the same as that in part (f)?
Figure P28.74
Trending nowThis is a popular solution!
Chapter 28 Solutions
Physics for Scientists and Engineers With Modern Physics
- A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forwardA student makes a homemade resistor from a graphite pencil 5.00 cm long, where the graphite is 0.05 mm indiameter. The resistivity of the graphite is =1.38102/m . The homemade resistor is place inseries with a switch, a 10.00-mF capacitor and a 0.50-V power source, (a) What is the BC time constant of the circuit? (b) What is the potential drop across the pencil 1.00 s after the switch is closed?arrow_forwardA homemade capacitor is constructed of 2 sheets of aluminum foil with an area of 2.00 square meters, separated by paper, 0.05 mm thick, of the same area and a dielectric constant of 3.7. The homemade capacitor is connected in series with a 100,00- resistor, a switch, and a 6.00-V voltage source, (a) What is the RC time constant of the circuit? (b) What is the initial current through the circuit, when the switch is closed? (c) How long does it take the current to reach one third of its initial value?arrow_forward
- A battery has an emf of 15.0 V. The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of the battery?arrow_forwardThe- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forward2o2 3052 352 552 652 2A A. The power dissipated in the 3 Ohms resistor is W. B. The total voltage is V. C. The power dissipated in the 5 Ohms resistor is W. Round all answers to whole numbers.arrow_forward
- Chapter 27, Problem 076 GO In the figure the ideal batteries have emfs &₁ = 18.5 V, &2 = 9.23 V, and 3 = 4.60 V, and the resistances are each 1.50 2. What are the (a) size and (b) direction (left or right) of current i₁? (c) Does battery 1 supply or absorb energy, and (d) what is its power? (e) Does battery 2 supply or absorb energy, and (f) what is its power? (g) Does battery 3 supply or absorb energy, and (h) what is its power? H • દ Floo + =1&₂arrow_forwardA toy battery has an emf of 33.0 V. The terminal voltage of the battery is 15.50 V when it is delivering 30.50 W of power to an external load resistor R. What is the internal resistance ( in Q) of the battery? Round your answer to the nearest thousandth of Q.arrow_forwardIn the figure the ideal batteries have emfs &₁ = 20.4 V, E2 = 9.31 V, and E3 = 5.30 V, and the resistances are each 1.90 02. What are the (a) size and (b) direction (left or right) of current i₁? (c) Does battery 1 supply or absorb energy, and (d) what is its power? (e) Does battery 2 supply or absorb energy, and (f) what is its power? (g) Does battery 3 supply or absorb energy, and (h) what is its power? #183 D www www www 4 4- +18₂ 4arrow_forward
- A 12.0 V emf automobile battery has a terminal voltage of 14.0 V when being charged by a current of 10.8 A. a) What is the battery's internal resistance (in Ω)? b) What power (in W) is dissipated inside the battery? c) At what rate (in °C/min) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.360 kcal/(kg · °C), assuming no heat escapes?arrow_forwardThe emf source, E. of the circuit shown in the figure has negligible internal resistance. The resistors have resistances R= 6.62 and R,=4.92. The capacitor has a capacitance C 13.4 uF When the capacitor is fully charged, the magnitude of the charge on its plates is Q 17.1 uC. What is E in units of Volts? R2 O 4.4 O 2.2 R1 O 3.1 O 0.22 O 1.1arrow_forwardEach of the six real batteries in the figure has an emf of 20.3 V and a resistance of 4.120. (a) What is the current through the (external) resistance R=3.57 0? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate does each battery transfer energy to internal thermal energy? R (a) Number Units Units (b) Number Units (c) Number Units (d) Numberarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning