Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 9CQ
Is the direction of current in a battery always from the negative terminal to the positive terminal? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which conductor would have the greatest resistance to the flow of charge entering from the left? Which would offer the least resistance? Explain the reason.
1. In a given fluid, positive ions, each with three excess protons, move towards right at a steady rate of 4.5 x
101° ions per minute and negative ions, each with two excess electron, move towards left at a steady rate of
2.5 x 1020 ions per minute. Determine the current directed to the right.
3. Two resistors, R1 = 2.00 kQ and R2= 3.00 kQ, are connected in parallel and their combination is
connected in series to a fully charged, 150-µF capacitor. When the switch is opened, the capacitor
begins to discharge. What is the time constant for the discharge?
A) 0.16 s
B) 0.17 s
C) 0.18 s
D) 0.19 s
14. Four 50-N resistors are connected in parallel. The equivalent resistance of the combination is
A) 50 2
B) 25 0
C) 12.5 Q.
D) 6.25 N
5. How many 4-2 resistors must be connected in parallel to have a total resistance of 0.8 Q?
A) 3
B) 4
C) 5
D) 6
6. Four identical lamps are connected in parallel to a 6-volt battery. What is the voltage drop across
each lamp?
A) 6 volts
B) 7 volts
C) 8 volts
D) 9 volts
7. What happens to the total resistance in a network when more resistors are added to a series
circuit?
A) increases
B) decreases
C) remains the same
8. Four resistors of resistances 30, 40, 50, and 60 are connected in parallel to a 12-volt source.
What is the current through the 5-2…
Chapter 28 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 28.1 - To maximize the percentage of the power from the...Ch. 28.2 - With the switch in the circuit of Figure 27.4a...Ch. 28.2 - With the switch in the circuit of Figure 27.6a...Ch. 28.2 - Prob. 28.4QQCh. 28.4 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQ
Ch. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Why is it possible for a bird to sit on a...Ch. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Is the direction of current in a battery always...Ch. 28 - Prob. 10CQCh. 28 - Prob. 1PCh. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and an...Ch. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - The following equations describe an electric...Ch. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54APCh. 28 - Prob. 55APCh. 28 - Prob. 56APCh. 28 - Prob. 57APCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 59APCh. 28 - Prob. 60APCh. 28 - When two unknown resistors are connected in series...Ch. 28 - Prob. 62APCh. 28 - Prob. 63APCh. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - Prob. 65APCh. 28 - Prob. 66APCh. 28 - Prob. 67APCh. 28 - Prob. 68APCh. 28 - Prob. 69APCh. 28 - Prob. 70APCh. 28 - Prob. 71APCh. 28 - Prob. 72APCh. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - Prob. 75APCh. 28 - Prob. 76APCh. 28 - Prob. 77APCh. 28 - Prob. 78APCh. 28 - Prob. 79APCh. 28 - Prob. 80APCh. 28 - Prob. 81APCh. 28 - Prob. 82CPCh. 28 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electric eel generates electric currents through its highly specialized Hunters organ, in which thousands of disk-shaped cells called electrocytes are lined up in series, very much in the same way batteries are lined up inside a flashlight. When activated, each electrocyte can maintain a potential difference of about 150 mV at a current of 1.0 A for about 2.0 ms. Suppose a grown electric eel has 4.0 103 electrocytes and can deliver up to 3.00 102 shocks in rapid series over about 1.0 s. (a) What maximum electrical power can an electric eel generate? (b) Approximately how much energy does it release in one shock? (c) How high would a mass of 1.0 kg have to be lifted so that its gravitational potential energy equals the energy released in 3.00 102 such shocks?arrow_forwardA man foolishly tries to fish a burning piece of bread from a toaster with a metal butter knife and comes into contact with 120-V ac. He does not even feel it since, luckily, he is wearing rubber-soled shoes. What is the minimum resistance of the path tire current follows through the person?arrow_forwardThe human body can exhibit a wide range of resistances to current depending on the path of the current, contact area, and sweatiness of the skin. Suppose the resistance across the chest from the left hand to the right hand is 1.0 106 . (a) How much voltage is required to cause possible heart fibrillation in a man, which corresponds to 500 mA of direct current? (b) Why should rubber-soled shoes and rubber gloves be worn when working around electricity?arrow_forward
- Integrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forwardReview. The healing element of an electric coffee maker operates at 120 V and carries a current of 2.00 A. Assuming the water absorbs all the energy delivered to the resistor, calculate the time interval during which the temperature of 0.500 kg of water rises from room temperature (23.00) to the boiling point.arrow_forwardCurrents of approximately 0.06 A can be potentially fatal. Currents in that range can make the heart fibrillate (beat in an uncontrolled manner). The resistance of a dry human body can be approximately 100 k . (a) What voltage can cause 0.06 A through a dry human body? (b) When a human body is wet, the resistance can fall to 100 . What voltage can cause harm to a wet body?arrow_forward
- Foolishly trying to fish a burning piece of bread from a toaster with a metal butter knife, a man conies into contact with 120-V AC. He does not even feel it since, luckily, he is wearing rubber-soled shoes. What is the minimum resistance of the path the current follows through the person?arrow_forwardA potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardTwo conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B? (a) 2 (b) 2 (c) 1 (d) 12 (e)12arrow_forward
- 13arrow_forwardCan the potential difference between the terminals of a battery ever be opposite in direction to the emf? If it can, give an example. If it cannot, explain why not.arrow_forwardIf you work out enough to visibly increase the diameter of your biceps, will this increase or decrease your susceptibility to electric shock? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY