Introduction to General, Organic and Biochemistry
11th Edition
ISBN: 9781285869759
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 28.77P
Interpretation Introduction
Interpretation:
The production of glucose from carbon dioxide and water in photosynthesis should be compared with the complete aerobic catabolism of glucose.
Concept Introduction:
Photosynthesis is the process in which carbon dioxide and water combine in the presence of chlorophyll and sunlight to form glucose molecule with oxygen gas.
The catabolism can be defined as the breaking of molecules to form small molecules. Aerobic catabolism of glucose is the reaction of glucose and oxygen to form carbon dioxide and water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How much ATP is formed by the complete catabolism of stearic acid, C 18H 36O 2?
Why does Glycolysis only release a small amount of the total available energy that can be harvested from glucose?
Trypanosomes living in the bloodstream obtain all their free energy from glycolysis. They take up glucose from the host’s blood and excrete pyruvate as a waste product. In this part of their life cycle, trypanosomes do not carry out any oxidative phosphorylation, but they do use another oxygen-dependent pathway, which is absent in mammals, to oxidize NADH. Would this pathway be necessary if the trypanosome excreted lactate rather than pyruvate? Explain.
Chapter 28 Solutions
Introduction to General, Organic and Biochemistry
Ch. 28.7 - Prob. 28.1PCh. 28 - What are the products of lipase-catalyzed...Ch. 28 - What is the main use of amino acids in the body?Ch. 28 - Prob. 28.4PCh. 28 - Prob. 28.5PCh. 28 - Prob. 28.6PCh. 28 - Prob. 28.7PCh. 28 - Prob. 28.8PCh. 28 - Prob. 28.9PCh. 28 - Prob. 28.10P
Ch. 28 - Prob. 28.11PCh. 28 - Prob. 28.12PCh. 28 - Prob. 28.13PCh. 28 - Prob. 28.14PCh. 28 - Prob. 28.15PCh. 28 - Prob. 28.16PCh. 28 - Prob. 28.17PCh. 28 - Prob. 28.18PCh. 28 - Prob. 28.19PCh. 28 - Prob. 28.20PCh. 28 - Two enzymes participating in ß-oxidation have the...Ch. 28 - Prob. 28.22PCh. 28 - Prob. 28.23PCh. 28 - Is the ß -oxidation of fatty acid (without the...Ch. 28 - Calculate the number of ATP molecules obtained in...Ch. 28 - Prob. 28.26PCh. 28 - Prob. 28.27PCh. 28 - Prob. 28.28PCh. 28 - Prob. 28.29PCh. 28 - Prob. 28.30PCh. 28 - Prob. 28.31PCh. 28 - Prob. 28.32PCh. 28 - Prob. 28.33PCh. 28 - Ammonia, NH3, and ammonium ion, NH+4are both...Ch. 28 - Prob. 28.35PCh. 28 - Prob. 28.36PCh. 28 - Prob. 28.37PCh. 28 - Prob. 28.38PCh. 28 - 28-39 The metabolism of the carbon skeleton of...Ch. 28 - Prob. 28.40PCh. 28 - Prob. 28.41PCh. 28 - Prob. 28.42PCh. 28 - Prob. 28.43PCh. 28 - Prob. 28.44PCh. 28 - Prob. 28.45PCh. 28 - Prob. 28.46PCh. 28 - Prob. 28.47PCh. 28 - Prob. 28.48PCh. 28 - Prob. 28.49PCh. 28 - Prob. 28.50PCh. 28 - Prob. 28.51PCh. 28 - Prob. 28.52PCh. 28 - Prob. 28.53PCh. 28 - Prob. 28.54PCh. 28 - Prob. 28.55PCh. 28 - Prob. 28.56PCh. 28 - Prob. 28.57PCh. 28 - Write the products of the transamination reaction...Ch. 28 - Prob. 28.59PCh. 28 - Prob. 28.60PCh. 28 - Prob. 28.61PCh. 28 - Prob. 28.62PCh. 28 - Prob. 28.63PCh. 28 - Prob. 28.64PCh. 28 - Prob. 28.65PCh. 28 - Prob. 28.66PCh. 28 - Prob. 28.67PCh. 28 - Prob. 28.68PCh. 28 - Prob. 28.69PCh. 28 - Prob. 28.70PCh. 28 - Prob. 28.71PCh. 28 - Prob. 28.72PCh. 28 - Prob. 28.73PCh. 28 - Prob. 28.74PCh. 28 - Prob. 28.75PCh. 28 - Prob. 28.76PCh. 28 - Prob. 28.77PCh. 28 - Prob. 28.78PCh. 28 - Prob. 28.79PCh. 28 - Many soft drinks contain citric acid to add...Ch. 28 - Prob. 28.81PCh. 28 - One occasionally hears diet advice that proteins...Ch. 28 - Prob. 28.83PCh. 28 - Prob. 28.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The oxidation of 1 mol of glucose supplies enough meta-bolic energy to form 36 mol of ATP. Oxidation of 1 mol of a typ-ical dietary fat like tristearin (C₅₇H₁₁₆O₆) yields enough energyto form 458 mol of ATP. (a) How many molecules of ATP canform per gram of glucose? (b) Per gram of tristearin?arrow_forwardAnaerobic glycolysis (i.e., lactic acid fermentation) produces pyruvate that is then converted to lactate through the activity of lactate dehydrogenase. The conversion of pyruvate to lactate would seem to be an unnecessary step, since this process does not result in any further release of energy. Explain the necessity for the production of lactate as the endpoint for anaerobic glycolysis.arrow_forwardGive an account of the total ATP yield when I molecule of glucose is converted to carbon dioxide and water?arrow_forward
- In the citric acid cycle, a - ketoglutarate dehydrogenase catalyzes the reaction from a - ketoglutarate to Succinyl CoA. Given this reaction, calculate for the enthalpy of formation of the product using (a) Hess's Law, (b) standard enthalpies of formation and (c) mean bond enthalpies. Show your complete solution. COA-S OOC CH2 CH2 + NAD++ COA + CO2 + NADH CH2 a-ketoglutarate CH2 dehydrogenase COO a-ketoglutarate COO Succinyl CoAarrow_forwardThe AG" of the dephosphorylation of phosphocreatine is -43.0 kJ/mol. Phosphocreatine → creatine +Pi; -43.0kJ/mol When coupled to the phosphorylation of ADP to ATP (+30.5kJ/mol) ADP +Pi → ATP; +30.5 kJ/mol calculate the actual, physiological AG for the following reaction in kJ/mol: Phosphocreatine + ADP creatine + ATP at 37°C, with concentrations as follows: Phosphocreatine = 0.715 mM creatine = 0.566 mM ADP = 0.431 mM ATP = 2.382 mMarrow_forwardDetermine the direction that each of the reactions will progress. Assume that the reactants and products are present in equimolar amounts. The standard free energy of hydrolysis of ATP is –30.5 kJ/mol. fructose+ATP ____fructose 6‑phosphate+ADP The standard free energy of hydrolysis for fructose 6‑phosphate is −15.9 kJ/mol. 3‑phosphoglycerate+ATP___1,3‑bisphosphoglycerate+ADP The standard free energy of hydrolysis for 1,3‑bisphosphoglycerate is −49.3 kJ/mol. creatine+ATP___creatine phosphate+ADP The standard free energy of hydrolysis for creatine phosphate is –43.0 kJ/mol.arrow_forward
- The average adult consumes approximately 11,700 kJ per day. Assuming that the metabolic pathways leading to ATP synthesis operate at 50% thermodynamic efficiency, about 5850 kJ ends up in the form of synthesized ATP. The average adult consumes approximately 11,700 kJ per day. Assuming that the metabolic pathways leading to ATP synthesis operate at 50% thermodynamic efficiency, about 5850 kJ ends up in the form of synthesized ATP. Imagine that creatine phosphate, rather than ATP, is the universal energy carrier molecule in the human body. Assume that the cellular concentrations of creatine phosphate, creatine, and phosphate are 21.7 mM, 2.17×10-3 mM, and 6.30 mM, respectively. Calculate the weight of creatine phosphate that would need to be consumed each day by a typical adult human if creatine phosphate could not be recycled. Estimate the free energy of hyrdolysis of creatine phosphate under cellular conditions to determine how many moles are required. Use the standard…arrow_forwardNADH and FADH2 can "create" ATP only if the cell can do electron transport True Falsearrow_forwardOne of the major goals of metabolism is using energy for catabolism of complex molecules. * O True O Falsearrow_forward
- Consider the malate dehydrogenase reaction from the citric acid cycle. Given the listed concentrations, calculate the free energy change for this reaction at energy change for this reaction at 37.0 °C (310 K). AG' for the reaction is +29.7 kJ/mol. Assume that the reaction occurs at pH 7. [malate] = 1.25 mM [oxaloacetate] = 0.130 mM [NAD+] = 440 mM [NADH] = = 180 mM kJ.mol-¹ AG: X10 TOOLSarrow_forwardFor a given acid HA, it was determined that at pH 6.0 the concentration of the conjugate base [A] was 0.075 M and the acid [HA] was 0.025 M. What percent of this acid is ionized at pH 6.0? What is the pKa of this acid? What pH would this acid be 50% lonized?arrow_forward. Each gram of mammalian skeletal muscle consumes ATP at a rate of about 1x 10-3 mol/min during contraction. Concentrations of ATP and creatine phosphate in muscle are about 4 mM and 25 mM, respectively, and the density of muscle tissue can be taken to be about 1.2 g/cm'. (a) How long could contraction continue using ATP alone? (b) If all creatine phosphate were converted into ATP and utilized as well, how long could contraction continue? (c) What do these answers tell you?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning