Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.8, Problem 16P
Consider a river flowing toward a lake at an average velocity of 3 m/s at a rate of 500 m3/s at a location 90 m above the lake surface. Determine the total
FIGURE P2–16
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a river flowing toward a lake at an average velocity of 3 m/s at a rate of 500 m3 /s at a location 90 m above the lake surface. Determine the total mechanical energy of the river water per unit mass and the power generation potential of the entire river at that location.
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power
generation potential of a wind turbine with 80-m-diameter blades at that location. Also, determine the actual electric power
generation, assuming an overall efficiency of 30 percent. Take the air density to be 1.25 kg/m³.
The mechanical energy of air per unit mass is
The power generation potential of the wind turbine is
The actual electric power generation is
kW.
1kJ/kg.
kW.
At a certain location, wind is blowing steadily at 10 m/s. Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 70-m-diameter blades at that location. Also determine the actual electric power generation assuming an overall efficiency of 30 percent. Take the air density to be 1.25 kg/m3.
Chapter 2 Solutions
Thermodynamics: An Engineering Approach
Ch. 2.8 - What is total energy? Identify the different forms...Ch. 2.8 - List the forms of energy that contribute to the...Ch. 2.8 - How are heat, internal energy, and thermal energy...Ch. 2.8 - What is mechanical energy? How does it differ from...Ch. 2.8 - Natural gas, which is mostly methane CH4, is a...Ch. 2.8 - Portable electric heaters are commonly used to...Ch. 2.8 - Prob. 7PCh. 2.8 - Prob. 8PCh. 2.8 - 2–9E Calculate the total potential energy, in Btu,...Ch. 2.8 - Prob. 10P
Ch. 2.8 - Prob. 11PCh. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Prob. 14PCh. 2.8 - Prob. 15PCh. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - Prob. 23PCh. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - Prob. 25PCh. 2.8 - 2–26C Lifting a weight to a height of 20 m takes...Ch. 2.8 - Prob. 27PCh. 2.8 - Prob. 28PCh. 2.8 - Prob. 29PCh. 2.8 - Prob. 30PCh. 2.8 - Prob. 31PCh. 2.8 - Prob. 32PCh. 2.8 - Prob. 33PCh. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - Prob. 36PCh. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Prob. 39PCh. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - Prob. 43PCh. 2.8 - Prob. 44PCh. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Prob. 46PCh. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - Prob. 48PCh. 2.8 - 2-49 The 60-W fan of a central heating system is...Ch. 2.8 - Prob. 50PCh. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Prob. 52PCh. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Prob. 54PCh. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - Prob. 57PCh. 2.8 - Prob. 58PCh. 2.8 - Prob. 59PCh. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - Prob. 62PCh. 2.8 - Prob. 63PCh. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Prob. 69PCh. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - Prob. 71PCh. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - Prob. 73PCh. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Prob. 80PCh. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 83PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 110RPCh. 2.8 - Prob. 111RPCh. 2.8 - Prob. 112RPCh. 2.8 - 2–113 The U.S. Department of Energy estimates that...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Prob. 117RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Prob. 120RPCh. 2.8 - Prob. 121RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 129FEPCh. 2.8 - Prob. 130FEPCh. 2.8 - Prob. 131FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 133FEPCh. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Consider a subsonic compressible flow in cartesian coordinates where the velocity potential is given by (x,y)=V...
Fundamentals of Aerodynamics
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to t...
Mechanics of Materials (10th Edition)
What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, (c) 760 Mg?
Statics and Mechanics of Materials (5th Edition)
For the beam loading of Figure P334, draw the complete shearing force and bending moment diagrams, and determin...
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a river flowing toward a lake at an average velocity of 3 m/s at a rate of 500 m³/s at a location 90 m above the lake surface. Determine the total mechanical energy of the river water per unit mass and the power generation potential of the entire river at that location. Answer (0.887 kJ/kg, 443.7MW)arrow_forwardA reciprocating compressor draws in 500 ftImin of air whose density is 0.079 Ibm/t° and discharges it at a density of 0.304 Ibm/t°. The pressure in the suction and discharge are 15 psia and 80 psia, respectively. The increase in the specific internal energy is 33.8 BTU/b and the heat transferred from the air by cooling is 13 BTU/lb. Determine the work in the air, in Hp.arrow_forwardConsider a pumped hydro system that is used for energy storage. During off-peak hours, excess electricity is used to pump water up to a storage reservoir. During peak demand periods the flow is reversed and electric power is generated by flowing the water through a hydraulic turbine. The storage reservoir is 100 m above the hydro turbine/pump units and the hydraulic turbine can accommodate up to 650 l/s of flow. How much area would the pumped storage reservoir need to be to store 1000 MWh of hydro energy if its average depth were 10 m? Express your answer in acres. Estimate the theoretical power (assume 100% efficiency) produced during the times that electricity is generated. If the round-trip efficiency of the pumped storage unit is 75% (e., energy out / energy in), how much water (m3) must the reservoir hold to store the same 1000 MWh of energy?arrow_forward
- Consider a river flowing toward a lake at an average speed of 3 m/s at a rate of 500 m3/s at a location 55 m above the lake surface. Determine the total mechanical energy of the river water per unit mass and the power generation potential of the entire river at that location.arrow_forwardConsider a river flowing toward a lake at an average velocity of 3 m/s at a rate of 500 m³ls at a location 90 m above the surface. Find the total mechanical energy of the river water per unit mass and the power generation potential of the entire river at that location.arrow_forwardAn oil pump is drawing 44 kW of electric power while pumping oil with ρ = 860 kg/m3 at a rate of 0.1 m3 /s. The inlet and outlet diameters of the pipe are 8 cm and 12 cm, respectively. If the pressure rise of oil in the pump is measured to be 500 kPa and the motor efficiency is 90 percent, determine the mechanical efficiency of the pump.arrow_forward
- An oil pump is drawing 18 kW of electric power while pumping oil with density 860 kg/m³ at a rate of 0.1 m³/s. The inlet and outlet diameters of the pipe are 8 cm and 16 cm, respectively. If the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 95 percent, determine the mechanical efficiency of the pump. Take the kinetic energy correction factor as 1.05. Docm 90 Pump 8 cm 18 kW Motor Oil AP-250 kPa 0.1 m/s The mechanical efficiency of the pump is [ 1%.arrow_forwardConsider a river flowing toward a lake at an average velocity of 22.5 km/hr at a rate of 387 m3/s at a location 14600cm above the lake surface. Determine the total mechanical energy of the river water per unit mass and the power generation potential of the entire river at that location. Take the density of water as 905 kg/m3 .arrow_forwardA river flowing steadily at a rate of 125 m3/s is considered for hydroelectric power generation. It is determined that a dam can be built to collect water and release it from an elevation difference of 70 m to generate power. Determine how much power can be generated from this river water after the dam is filled.arrow_forward
- The pump of a water distribution system is powered by a 15-kW electric motor whose efficiency is 95 percent. The water flow rate through the pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the pressures at the inlet and outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), respectively, determine the mechanical efficiency of the pump. Water 300 kPa 100 kPa 150 Ls motor Motor 15 kW The mechanical efficiency of the pump is %.arrow_forwardThe utility company is selling electric power for $0.06/kWh at night, and $0.13/kWh for power produced in the day. Company WaterCO builds a large reservoir 50m above lake level to pump water from the lake to the reservoir at night, and then letting the water flow from the reservoir back into the lake during the day; creating power as a pump-motor operation and a turbine-generator for reverse flow. Here, the water flow rate of 2 m3/s is used in either direction and the irreversible head loss of the piping system is 4m. The combined pump-motor and turbine-generator efficiencies are 80% each. If the system operates for 10 hours each in the pump and turbine modes during a normal day, what is the potential revenue this pump-turbine system can generate per year?arrow_forwardWater is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of the upper reservoir is 45 m higher than that of the lower reservoir. If the flow rate of water is measured to be 0.03 m3 /s, determine mechanical power that is converted to thermal energy during this process due to frictional effects.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license