Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 2.8, Problem 121RP
To determine

The diameter of downstream channel and power produced by the wind mill

Expert Solution & Answer
Check Mark

Answer to Problem 121RP

The diameter of downstream channel is 7.7658m_.

The magnitude of power produced by the wind mill is 3.98kW_.

Explanation of Solution

Write the expression the specific volume of the air.

v=RTP (I).

Here, specific volume of the air is v, gas constant is R, temperature of the air is T, and pressure of the air is P.

Use the continuity equation, equate velocity of air flow at rotor and wind channel downstream.

A1V1=A2V2 (II).

Here, area of cross section at rotor is A1, velocity of wind at rotor is V1, area of wind channel downstream is A2, velocity of wind at downstream channel is V2.

Write the expression for area in terms of diameter in equation (II).

πD124V1=πD224V2

D2=V1V2D1 (III).

Here, diameter of the rotor is D1 and diameter of downstream channel is D2.

Write the expression for the mass flow rate of wind mill.

m˙=A1V1v

m˙=πD12V14v (IV).

Here, mass flow rate is m˙.

Write the expression for the power produced by the wind mill.

W˙=m˙(V12V222) (V).

Here, power produced by the wind mill is

Conclusion:

Substitute 0.287kPam3/kgK for R, 20°C for T, and 100 kPa for P to find v in equation (I).

v=(0.287kPam3/kgK)(20+273.15)K100kPa=0.8413m3kg

Thus, specific volume of the air is 0.8413m3/kg.

Substitute 7m for D1, 8m/s for V1, and 6.5m/s for V2 to find D2 in equation (III).

D2=8m/s6.5m/s×7m=7.7658m

Thus, the diameter of downstream channel is 7.7658m_.

Substitute 7m for D1, 0.8413m3/kg for v, and 8m/s for V1 to find mass flow rate in equation (IV).

m˙=π(7m)2(8m/s)4×0.8413m3/kg=365.9352kgs=366kgs

Thus, mass flow rate is 366kg/s.

Substitute 366kg/s for m˙, 8m/s for V1, and 6.5m/s for V2 to find W˙ in equation (V).

W˙=366kg/s((8m/s)2(6.5m/s)22)=3,979.45kgm2s3(1kJ/kg1,000m2/s2)=3.979kJs3.98kW

Thus, power produced by the wind mill is 3.98kW_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
calculate their DoF using Gruebler's formula. PUNTO 6. PUNTO 7. (Ctrl)
A pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.given that: summation of K gate valve = 0.25check valve=390 degree elbow= 0.75foot valve= 0.78
A pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.

Chapter 2 Solutions

Thermodynamics: An Engineering Approach

Ch. 2.8 - Prob. 11PCh. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Prob. 14PCh. 2.8 - Prob. 15PCh. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - Prob. 23PCh. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - Prob. 25PCh. 2.8 - 2–26C Lifting a weight to a height of 20 m takes...Ch. 2.8 - Prob. 27PCh. 2.8 - Prob. 28PCh. 2.8 - Prob. 29PCh. 2.8 - Prob. 30PCh. 2.8 - Prob. 31PCh. 2.8 - Prob. 32PCh. 2.8 - Prob. 33PCh. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - Prob. 36PCh. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Prob. 39PCh. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - Prob. 43PCh. 2.8 - Prob. 44PCh. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Prob. 46PCh. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - Prob. 48PCh. 2.8 - 2-49 The 60-W fan of a central heating system is...Ch. 2.8 - Prob. 50PCh. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Prob. 52PCh. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Prob. 54PCh. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - Prob. 57PCh. 2.8 - Prob. 58PCh. 2.8 - Prob. 59PCh. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - Prob. 62PCh. 2.8 - Prob. 63PCh. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Prob. 69PCh. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - Prob. 71PCh. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - Prob. 73PCh. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Prob. 80PCh. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 83PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 110RPCh. 2.8 - Prob. 111RPCh. 2.8 - Prob. 112RPCh. 2.8 - 2–113 The U.S. Department of Energy estimates that...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Prob. 117RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Prob. 120RPCh. 2.8 - Prob. 121RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 129FEPCh. 2.8 - Prob. 130FEPCh. 2.8 - Prob. 131FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 133FEPCh. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY