Some engineers have developed a device that provides lighting to rural areas with no access to grid electricity. The device is intended for indoor use. It is driven by gravity, and it works as follows: A bag of rock or sand is raised by human power to a higher location. As the bag descends very slowly, it powers a sprocket-wheel which also rotates slowly. A gear train mechanism converts this slow motion to high speed, which drives a DC generator. The electric output from the generator is used to power an LED bulb. Consider a gravity-driven LED bulb that provides 16 lumens of lighting. The device uses a 10-kg sandbag that is raised by human power to a 2-m height. For continuous lighting, the bag needs to be raised every 20 minutes. Using an efficacy of 150 lumens per watt for the LED bulb, determine ( a ) the velocity of the sandbag as it descends and ( b ) the overall efficiency of the device.
Some engineers have developed a device that provides lighting to rural areas with no access to grid electricity. The device is intended for indoor use. It is driven by gravity, and it works as follows: A bag of rock or sand is raised by human power to a higher location. As the bag descends very slowly, it powers a sprocket-wheel which also rotates slowly. A gear train mechanism converts this slow motion to high speed, which drives a DC generator. The electric output from the generator is used to power an LED bulb. Consider a gravity-driven LED bulb that provides 16 lumens of lighting. The device uses a 10-kg sandbag that is raised by human power to a 2-m height. For continuous lighting, the bag needs to be raised every 20 minutes. Using an efficacy of 150 lumens per watt for the LED bulb, determine ( a ) the velocity of the sandbag as it descends and ( b ) the overall efficiency of the device.
Some engineers have developed a device that provides lighting to rural areas with no access to grid electricity. The device is intended for indoor use. It is driven by gravity, and it works as follows: A bag of rock or sand is raised by human power to a higher location. As the bag descends very slowly, it powers a sprocket-wheel which also rotates slowly. A gear train mechanism converts this slow motion to high speed, which drives a DC generator. The electric output from the generator is used to power an LED bulb.
Consider a gravity-driven LED bulb that provides 16 lumens of lighting. The device uses a 10-kg sandbag that is raised by human power to a 2-m height. For continuous lighting, the bag needs to be raised every 20 minutes. Using an efficacy of 150 lumens per watt for the LED bulb, determine (a) the velocity of the sandbag as it descends and (b) the overall efficiency of the device.
Branch of science that deals with the stationary and moving bodies under the influence of forces.
Consider the bar, shown in Figure 1 that undergoes axial displacement due to both a distributed load
and a point force. The bar is of cross-sectional area A = 1.10-3 m², and has a modulus of elasticity
E = 100 GPa.
1(x) = 5 kN/m
x=0.0
x=2.0
2.0m
10 kN
Figure 1: Bar domain with varying distributed forces.
a) The general form of the governing equations describing the bar's displacement, u(x), is given by,
d
(AE du(x))
-) +1(x) = 0.
d.x
dx
What are the accompanying boundary conditions for this bar?
b) Using the mesh in Figure 2, form the basis functions associated with element 2 and write the FEM
approximation over the element.
1
2
3
1
2
1m
1m
Figure 2: Mesh of 2 elements. Elements are numbered with underlines.
c) The general form of the element stiffness matrix system, with nodes indexed by i and j, is,
AE
Uj
N;(x)l(x)dx
– Ng(0)f(0)
¥ [4]}]{{}}={{{}\(\\+} + {N(2)f(2) = N (0)5() },
(1)
0, respectively.
L
=
(2)
where f(2) and f(0) denote the boundary forces at positions x 2 and x
Evaluate…
answer please
amination)
Question 1
Consider the bar, shown in Figure 1, that undergoes axial displacement due to both a distributed load
and a point force. The bar is of cross-sectional area A = 1.103 m2, and has a modulus of elasticity
E = 100 GPa.
1(x) = 5 kN/m
10 kN
X
x=0.0
x=2.0
2.0m
Figure 1: Bar domain with varying distributed forces.
a) The general form of the governing equations describing the bar's displacement, u(x), is given by,
d
(AE du(x)) + 1(x) = 0.
dx
dx
What are the accompanying boundary conditions for this bar?
MacBook Air
a
会
DII
F5
F6
F7
F8
80
F3
F4
0/
20
[8 marksl
8
FO
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.